Refine Your Search

Topic

Author

Search Results

Technical Paper

A Comparative Study between Physics, Electrical and Data Driven Lithium-Ion Battery Voltage Modeling Approaches

2022-03-29
2022-01-0700
This paper benchmarks three different lithium-ion (Li-ion) battery voltage modelling approaches, a physics-based approach using an Extended Single Particle Model (ESPM), an equivalent circuit model, and a recurrent neural network. The ESPM is the selected physics-based approach because it offers similar complexity and computational load to the other two benchmarked models. In the ESPM, the anode and cathode are simplified to single particles, and the partial differential equations are simplified to ordinary differential equations via model order reduction. Hence, the required state variables are reduced, and the simulation speed is improved. The second approach is a third-order equivalent circuit model (ECM), and the third approach uses a model based on a Long Short-Term Memory Recurrent Neural Network (LSTM-RNN)). A Li-ion pouch cell with 47 Ah nominal capacity is used to parameterize all the models.
Technical Paper

A Framework for Model Based Detection of Misfire in a Gasoline Engine with Dynamic Skip Fire

2019-04-02
2019-01-1288
A framework is proposed for model-based misfire detection in gasoline engines with dynamic skip fire by employing a novel control oriented engine model. The model-based techniques form compact description of plant behavior and have a number of well known benefits. The performance requirements and environment legislation resulted in a rigorous research on misfire detection due to which an extensive literature can be found for the problem of misfire detection in all-cylinder firing gasoline engines. Since there is no fix cylinder activation/de-activation sequence in dynamic skip fire engines. So, the problem of misfire detection in dynamic skip fire engines departs from its trivial nature. In the proposed framework, ‘cylinder skip sequence’ is also fed to the engine model along-with conventional engine inputs. The First Principle based Engine Model constructs the crankshaft angular speed fluctuation pattern for a given cylinder skip sequence.
Technical Paper

AV/ADAS Safety-Critical Testing Scenario Generation from Vehicle Crash Data

2022-03-29
2022-01-0104
This research leverages publicly available crash data to construct safety-critical scenarios focusing primarily on Level 3 Automated Driving Systems (ADS) safety assessment under highway driving conditions. NHTSA’s Crashworthiness Data System (CDS) has a rich dataset of representative crashes sampled from numerous Primary Sampling Units (PSUs) across the country. Each of these datasets includes the storyline, road geometry information, detailed description of actors involved in the crash, weather information, scene diagrams, crash images, and a myriad of other crash-specific details. The methodology adopted aims to generate critical scenarios from real-world driving to complement the existent regulatory tests for the validation of L3 ADS. For this work, a four-step approach was adopted to extract safety-critical scenarios from crash data.
Technical Paper

Accuracy Assessment of Three-Dimensional Site Features Generated with Aid of Photogrammetric Epipolar Lines in PhotoModeler and Using Minimal sUAS Imagery

2019-04-02
2019-01-0410
Photogrammetry is widely used in the accident reconstruction community to extract three-dimensional information from photographs. This article extends a prior study conducted by the authors, whereby model accuracy was assessed for a technique that exploited vehicle edges and epipolar line projections to construct 3D vehicle models, by examining 3D roadway and site features. To do so, artificial images were generated using an ideal computer-generated camera within a computer-assisted drawing environment to allow for a known reference model to compare with results produced using photogrammetry. A systematic study was undertaken by modeling the curvature, elevation, and super-elevation of a roadway and associated markings, sidewalks, and buildings, either by relying on discrete points or utilizing epipolar lines. The models were assessed for accuracy, and the sensitivity of the accuracy to camera elevation was considered.
Technical Paper

Accuracy Assessment of Three-Dimensional Vehicle Edge Features Generated with Aid of Photogrammetric Epipolar Lines

2018-04-03
2018-01-0530
Photogrammetry is widely used in the automotive and accident reconstruction communities to extract three-dimensional information from photographs. Prior studies in the literature have demonstrated the accuracy of such methods when photographs contain easily-identifiable, distinct points; however, it is often desirable to determine measurements for locations where a seam, edge, or contour line is available. To exploit such details, an analyst can control the direction that the epipolar line is projected onto the camera plane by strategic selection of photographs. This process constrains the search for the corresponding 3D point to a straight line that can be projected perpendicular to the seam, edge, or contour line. Thus, the goal of this study was to evaluate the modeling accuracy for cases in which an analyst uses epipolar lines in a workflow.
Technical Paper

Acoustic Characteristics of Automotive Catalytic Converter Assemblies

2004-03-08
2004-01-1002
An experimental study of the acoustic characteristics of automotive catalytic converters is presented. The investigation addresses the effects and relative importance of the elements comprising a production catalytic converter assembly including the housing, substrate, mat and seals. Attenuation characteristics are measured for one circular and one oval catalytic converter geometry, each having 400 cell per square inch substrates. For each geometry, experimental results are presented to address the effect of individual components in isolation, and in combination with other assembly components. Additional experiments investigate the significance of acoustic paths around the substrate and through the peripheral wall of the substrate. The experimental results are compared to address the significance of each component on the overall attenuation.
Technical Paper

Adaptation of TruckSim Models to Simulate Experimental Heavy Truck Hard Braking Test Data Under Various Levels of Brake Disablement

2010-10-05
2010-01-1920
This research focuses on the development and performance of analytical models to simulate a tractor-semitrailer in straight-ahead braking. The simulations were modified and tuned to simulate full-treadle braking with all brakes functioning correctly, as well as the behavior of the tractor-semitrailer rig under full braking with selected brakes disabled. The models were constructed in TruckSim and based on a tractor-semitrailer used in dry braking performance testing. The full-scale vehicle braking research was designed to define limits for engineering estimates on stopping distance when Class 8 air-braked vehicles experience partial degradation of the foundation brake system. In the full scale testing, stops were conducted from 30 mph and 60 mph, with the combination loaded to 80,000 lbs (gross combined weight or GCW), half payload, and with the tractor-semitrailer unladen (lightly loaded vehicle weight, or LLVW).
Technical Paper

Application of Collision Probability Estimation to Calibration of Advanced Driver Assistance Systems

2019-04-02
2019-01-1133
Advanced Driver Assistance Systems (ADAS) are designed and calibrated rigorously to provide them with the robustness against highly uncertain environments that they usually operate in. Typical calibration procedures for such systems rely extensively on track (controlled environment) testing, which is time-consuming, expensive, and sometimes cannot cover all the critical test scenarios that could be encountered by ADAS in the real world. Therefore, virtual (simulation-based) testing and validation has been gaining more prominence and emphasis for ensuring high coverage along with easier scalability and usage. This paper attempts to provide an alternative approach for calibrating ADAS in the controller validation phase by the aid of simulated test case scenarios. The study executes characterization of the uncertainty in the position and heading of the ego and the obstacle vehicles.
Technical Paper

Application of Scaled Deflection Injury Criteria to Two Small, Fragile Females in Side Impact Motor Vehicle Crashes

2018-04-03
2018-01-0542
Thoracic injury criteria have been previously developed to predict thoracic injury for vehicle occupants as a function of biomechanical response. Historically, biomechanical testing of post-mortem human surrogates (PMHS) for injury criteria development has primarily been focused on mid-sized males. Response targets and injury criteria for other demographics, including small females, have been determined by scaling values from mid-sized males. The objective of this study was to explore the applicability of scaled injury criteria to their representative population. Two PMHS were subjected to a side-impact loading condition which replicates a near-side, MDB-to-vehicle impact for the driver. This was accomplished using the Advanced Side Impact System, or ASIS, on a HYGE sled. The sled acceleration matched the acceleration profile of an impacted vehicle, while the four pneumatic cylinders of the ASIS produced realistic door intrusion.
Technical Paper

Child Restraint Systems (CRS) with Minor Installation Incompatibilities in Far Side Impacts

2021-04-06
2021-01-0915
Side impacts are disproportionately injurious for children compared to other crash directions. Far side impacts allow for substantial translation and rotation of child restraint systems (CRS) because the CRS does not typically interact with any adjacent structures. The goal of this study is to determine whether minor installation incompatibilities between CRS and vehicle seats cause safety issues in far side crashes. Four non-ideal CRS installation conditions were compared against control conditions having good fit. Two repetitions of each condition were run. The conditions tested were: 1) rear-facing (RF) CRS installed with a pool noodle to create proper recline angle, 2) RF CRS with narrow base, 3) forward-facing (FF) CRS with gap behind back near seat bight (i.e., vehicle seat angle too acute for CRS), 4) FF CRS with gap behind back near top of CRS (i.e., vehicle seat angle too obtuse for CRS). Second row captain’s chairs were set up at 10° anterior of lateral.
Technical Paper

Co-Simulation Framework for Electro-Thermal Modeling of Lithium-Ion Cells for Automotive Applications

2023-08-28
2023-24-0163
Battery packs used in automotive application experience high-power demands, fast charging, and varied operating conditions, resulting in temperature imbalances that hasten degradation, reduce cycle life, and pose safety risks. The development of proper simulation tools capable of capturing both the cell electrical and thermal response including, predicting the cell’s temperature rise and distribution, is critical to design efficient and reliable battery packs. This paper presents a co-simulation model framework capable of predicting voltage, 2-D heat generation and temperature distribution throughout a cell. To capture the terminal voltage and 2-D heat generation across the cell, the simulation framework employs a high-fidelity electrical model paired with a charge balance model based on the Poisson equation. The 2-D volumetric heat generation provided by the charge balance model is used to predict the temperature distribution across the cell surface using CFD software.
Technical Paper

Comparative Analysis of Protection Systems for DC Power Distribution in Electrified Vehicles

2022-03-29
2022-01-0135
Electric transportation has the potential of mitigating CO2 emissions and reduce fuel needs. One of the challenges for the growth of this industry is limited range and efficiency of the vehicles associated with battery storage systems and electric drive technology. High voltage systems are expected to increase efficiency and then vehicle mileage, however this increases the severity of the fault conditions, especially in case of short circuit. Melting fuse is commonly used for the purpose of protection in electrified vehicles, while it is effective and reliable, there are several shortcomings such as lack of precision, effect of ambient temperature, bulky, interruption time depending on the fault condition etc. Additionally, the on-board DC power distribution system (PDS) is characterized by low impedance, in this environment fuses are not able to limit the fault current leading to damage of electronics and hazard for the battery pack.
Journal Article

Comparison of Child Restraint System (CRS) Installation Methods and Misuse During Far-Side Impact Sled Testing

2023-04-11
2023-01-0817
Child occupants have not been studied in far-side impacts as thoroughly as frontal or near side crash modes. The objective is to determine whether the installation method of child restraint systems (CRS) affects far-side crash performance. Twenty far-side impact sled tests were conducted with rear-facing (RF) CRS, forward-facing (FF) CRS, high-back boosters, and belt only. Each was installed on second row captain’s chairs from a recent model year minivan. Common CRS installation errors were tested, including using the seat belt in Emergency Locking Mode (ELR) instead of Automatic Locking Mode (ALR), not attaching the top tether, and using both the lower anchors (LA) and seat belt together. Correct installations were also tested as a baseline comparison. Q3s and Hybrid III 6-year-old (6yo) anthropomorphic test devices (ATDs) were used. Lateral displacements of the CRS and head were examined as well as injury metrics in the head, spine, and torso.
Technical Paper

Comparison of the Responses of the Thorax and Pelvis of the GHBMC M50 -O Using Two Different Foam Materials in a High-Speed Rear Facing Frontal Impact Scenario

2024-04-09
2024-01-2647
Due to the lack of biofidelity seen in GHBMC M50-O in rear-facing impact simulations involving interaction with the seat back in an OEM seat, it is important to explore how the boundary conditions might be affecting the biofidelity and potentially formulate methods to improve biofidelity of different occupant models in the future while also maintaining seat validity. This study investigated the influence of one such boundary condition, which is the seat back foam material properties, on the thorax and pelvis kinematics and injury outcomes of the GHBMC 50th M50-O model in a high-speed rear-facing frontal impact scenario, which involves severe occupant loading of the seat back. Two different seat back foam materials were used – a stiff foam with high densification and a soft foam with low densification. The peak magnitudes of the T-spine resultant accelerations of the GHBMC M50-O increased with the use of soft foam as compared to stiff foam.
Technical Paper

Cooperative Collision Avoidance in a Connected Vehicle Environment

2019-04-02
2019-01-0488
Connected vehicle (CV) technology is among the most heavily researched areas in both the academia and industry. The vehicle to vehicle (V2V), vehicle to infrastructure (V2I) and vehicle to pedestrian (V2P) communication capabilities enable critical situational awareness. In some cases, these vehicle communication safety capabilities can overcome the shortcomings of other sensor safety capabilities because of external conditions such as 'No Line of Sight' (NLOS) or very harsh weather conditions. Connected vehicles will help cities and states reduce traffic congestion, improve fuel efficiency and improve the safety of the vehicles and pedestrians. On the road, cars will be able to communicate with one another, automatically transmitting data such as speed, position, and direction, and send alerts to each other if a crash seems imminent. The main focus of this paper is the implementation of Cooperative Collision Avoidance (CCA) for connected vehicles.
Journal Article

Crash Factor Analysis in Intersection-Related Crashes Using SHRP 2 Naturalistic Driving Study Data

2021-04-06
2021-01-0872
Intersections have a high risk of vehicle-to-vehicle conflicts because of the overlapping traffic flow from multiple roads. To understand the factors contributing to the crashes, this study examines the common characteristics in intersection-related crash and near- crash events, such as the existence of traffic control devices, the driver at fault, and occurrence of visual obstructions. The descriptive data of the crash and near-crash events recorded in the Second Strategic Highway Research Program Naturalistic Driving Study (SHRP 2 NDS) database is used in categorization and statistical analysis in this study. First, the events are divided into seven categories based on trajectories of the conflicting vehicles. The categorization provides the basis for in-depth analysis of crash-contributing factors in specific confliction patterns. Subsequently, descriptive statistics are used to portray each of the categories.
Technical Paper

Criticality Assessment of Simulation-Based AV/ADAS Test Scenarios

2022-03-29
2022-01-0070
Testing any new safety technology of Autonomous Vehicles (AV) and Advanced Driver Assistance Systems (ADAS) requires simulation-based validation and verification. The specific scenarios used for testing, outline incidences of accidents or near-miss events. In order to simulate these scenarios, specific values for all the above parameters are required including the ego vehicle model. The ‘criticality’ of a scenario is defined in terms of the difficulty level of the safety maneuver. A scenario could be over-critical, critical, or under-critical. In over-critical scenarios, it is impossible to avoid a crash whereas, for under-critical scenarios, no action may be required to avoid a crash. The criticality of the scenario depends on various parameters e.g. speeds, distances, road/tire parameters, etc. In this paper, we propose a definition of criticality metric and identify the parameters such that a scenario becomes critical.
Technical Paper

Design Methodology for Energy Storage System in Motorsports Using Statistical Analysis of Mission Profile

2022-03-29
2022-01-0662
In recent years, many motorsports have been developing competitions based on electric vehicles. The demanding performance requires the battery pack to have the perfect balance between energy, power, and weight. This research paper presents a systematic methodology for the initial design of the battery pack (size and cell chemistry) by statistically analyzing the characteristics of the mission profile. The power profile for the battery pack of a motorsport vehicle can be estimated by considering the duty cycle of a racing car using the technical and sporting regulations and vehicle parameters. In this paper, many statistical metrics correlated to this power profile have been defined and analyzed (such as the max, mean, and standard deviation of the power profile, the total energy consumed, and the expected heat generation). These metrics have been used to estimate the cell energy and power density requirement and the pack sizing considering the weight constraints.
Technical Paper

Design of Robust Active Load-Dependent Vehicular Suspension Controller via Static Output Feedback

2013-09-24
2013-01-2367
In this paper, we focus on the active vehicular suspension controller design. A quarter-vehicle suspension system is employed in the system analysis and synthesis. Due to the difficulty and cost in the measuring of all the states, we only choose two variables to construct the feedback loop, that is, the control law is a static-output-feedback (SOF) control. However, the sensor reduction would induce challenges in the controller design. One of the main challenges is the NP-hard problem in the corresponding SOF controller design. In order to deal with this challenge, we propose a two-stage design method in which a state-feedback controller is firstly designed and then the state-feedback controller is used to decouple the nonlinear conditions. To better compensate for the varying vehicle load, a robust load-dependent control strategy is adopted. The proposed design methodology is applied to a suspension control example.
Technical Paper

Design of a Grid-Friendly DC Fast Charge Station with Second Life Batteries

2019-04-02
2019-01-0867
DC-fast charge (DCFC) may be amenable for widespread EV adoption. However, there are potential challenges associated with implementation and operation of the DCFC infrastructures. The integration of energy storage systems can limit the scale of grid installation required for DCFC and enable more efficient grid energy usage. In addition, second-life batteries (SLBs) can find application in DCFC, significantly reducing installation cost when compared to solutions based on new battery packs. However, both system architecture and control strategy require optimization to ensure an optimal use of SLBs, including degradation and thermal aspects. This study proposes an application of automotive SLBs for DCFC stations where high power grid connection is not available or feasible. Several SLBs are connected to the grid by means of low power chargers (e.g. L2 charging station), and a DC/DC converter controls the power to the EV power dispenser.
X