Refine Your Search

Topic

Author

Search Results

Journal Article

A 1D/Quasi-3D Coupled Model for the Simulation of I.C. Engines: Development and Application of an Automatic Cell-Network Generator

2017-03-28
2017-01-0514
Nowadays quasi-3D approaches are included in many commercial and research 1D numerical codes, in order to increase their simulation accuracy in presence of complex shape 3D volumes, e.g. plenums and silencers. In particular, these are regarded as valuable approaches for application during the design phase of an engine, for their capability of predicting non-planar waves motion and, on the other hand, for their low requirements in terms of computational runtime. However, the generation of a high-quality quasi-3D computational grid is not always straightforward, especially in case of complex elements, and can be a time-consuming operation, making the quasi-3D tool a less attractive option. In this work, a quasi-3D module has been implemented on the basis of the open-source CFD code OpenFOAM and coupled with the 1D code GASDYN.
Technical Paper

A 2D Model for Tractor Tire-Soil Interaction: Evaluation of the Maximum Traction Force and Comparison with Experimental Results

2011-04-12
2011-01-0191
The paper investigates the interaction between soil and tractor tires through a 2D numerical model. The tire is schematized as a rigid ring presenting a series of rigid tread bars on the external circumference. The outer profile of the tire is divided into a series of elements, each one able to exchange a normal and a tangential contact force with the ground. A 2D soil model was developed to compute the forces at the ground-tire interface: the normal force is determined on the basis of the compression of the soil generated by the sinking of the tire. The soil is modeled through a layer of springs characterized by two different stiffness for the loading (lower stiffness) and unloading (higher stiffness) condition. This scheme allows to introduce a memory effect on the soil which results stiffer and keeps a residual sinking after the passage of the tire. The normal contact force determines the maximum value of tangential force provided before the soil fails.
Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

2017-03-28
2017-01-0837
Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Technical Paper

A Comprehensive Numerical Model for Numerical Simulation of Ice Accretion and Electro-Thermal Ice Protection System in Anti-icing and De-icing Mode, with an Ice Shedding Analysis

2023-06-15
2023-01-1463
This work presents a comprehensive numerical model for ice accretion and Ice Protection System (IPS) simulation over a 2D component, such as an airfoil. The model is based on the Myers model for ice accretion and extended to include the possibility of a heated substratum. Six different icing conditions that can occur during in-flight ice accretion with an Electro-Thermal Ice Protection System (ETIPS) activated are identified. Each condition presents one or more layers with a different water phase. Depending on the heat fluxes, there could be only liquid water, ice, or a combination of both on the substratum. The possible layers are the ice layer on the substratum, the running liquid film over ice or substratum, and the static liquid film between ice and substratum caused by ice melting. The last layer, which is always present, is the substratum. The physical model that describes the evolution of these layers is based on the Stefan problem. For each layer, one heat equation is solved.
Journal Article

A Constant Equivalence Ratio Multi-Zone Approach for a Detailed and Fast Prediction of Performances and Emission in CI Engines

2022-03-29
2022-01-0381
The paper illustrates and validates a novel predictive combustion model for the estimation of performances and pollutant production in CI engines. The numerical methodology was developed by the authors for near real-time applications, while aiming at an accurate description of the air mixing process by means of a multi-zone approach of the air-fuel mass. Charge stratification is estimated via a 2D representation of the fuel spray distribution that is numerically derived by an axial one-dimensional control-volume description of the direct injection. The radial coordinate of each control volume is reconstructed a posteriori by means of a local distribution function. Fuel mass clustered in each zone is further split in ‘liquid’, ‘unburnt’ and ‘burnt’ sub-zones, given the local properties of the fuel spray control volumes with respect to space-time location of modelled ignition delay, liquid length, and flame lift-off.
Technical Paper

A LES Study on the Evolution of Turbulent Structures in Moving Engine Geometries by an Open-Source CFD Code

2014-04-01
2014-01-1147
The dynamics and evolution of turbulent structures inside an engine-like geometry are investigated by means of Large Eddy Simulation. A simplified configuration consisting of a flat-top cylinder head with a fixed, axis-centered valve and low-speed piston has been simulated by the finite volume CFD code OpenFOAM®; the standard version of the software has been extended to include the compressible WALE subgrid-scale model, models for the generation of synthetic turbulence, some improvements to the mesh motion strategy and algorithms for LES data post-processing. In order to study both the initial transient and the quasi- steady operating conditions, ten complete engine cycles have been simulated. Phase and spatial averages have been performed over cycles three to ten in order to extract first and second moment of velocity; these quantities have then been used to validate the numerical procedure by comparison against experimental data.
Technical Paper

A McPherson Lightweight Suspension Arm

2020-04-14
2020-01-0772
The paper deals with the design and manufacturing of a McPherson suspension arm made from short glass fiber reinforced polyamide (PA66). The design of the arm and the design of the molds have been made jointly. According to Industry 4.0 paradigms, a full digitalization of both the product and process has been performed. Since the mechanical behavior of the suspension arm strongly depends on constraints which are difficult to be modelled, a simpler structure with well-defined mechanical constraints has been developed. By means of such simple structure, the model for the behavior of the material has been validated. Since the suspension arm is a hybrid structure, the associated simple structure is hybrid as well, featuring a metal sheet with over-molded polymer. The issues referring to material flow, material to material contact, weld lines, fatigue strength, high and low temperature behavior, creep, dynamic strength have been investigated on the simple structure.
Journal Article

A Method for Vibration and Harshness Analysis Based on Indoor Testing of Automotive Suspension Systems

2010-04-12
2010-01-0639
The paper presents a method for the indoor testing of road vehicle suspension systems. A suspension is positioned on a rotating drum which is located in the Laboratory for the Safety of Transport at Politecnico di Milano. Special six-axis load cells have been designed and used for measuring the forces/moments acting at each suspension-chassis joints. The forces/moments, wheel accelerations, displacements are measured up to 100 Hz. Two different types of test can be performed. The tire/wheel unbalance effect on the suspension system behavior (Vibration and Harshness, VH) has been analyzed by testing the suspension system from zero to the vehicle maximum speed on a flat surface and by monitoring the forces transmitted to the chassis. In the second kind of test, the suspension system has been excited as the wheel passes over different cleats fixed on the drum.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Technical Paper

A Review of the State of the Art of Electric Traction Motors Cooling Techniques

2018-04-03
2018-01-0057
This paper provides a review on state-of-art modern cooling systems employed for thermal cooling of electric motors for vehicle applications. In recent years, the pursue of a more sustainable and ecofriendly mobility has pushed the research towards the development of electric vehicle powertrain systems. Besides the evident advantages of the adoption of electric traction systems in terms of pollution and efficiency, the need of an effective cooling system for the electric machine components gained more and more importance in order to maintain high efficiency and ensure high durability. In fact, it is known that high temperatures can be harmful for the electric motor: besides the evident damages for mechanical parts, the influence on the permanent magnet properties is not negligible [1] [2]. In this fast-evolving environment, different solutions for the thermal problem have been researched and adopted, each one with its own pros and cons.
Journal Article

Accelerated Testing of Brake Hoses for Durability Assessment

2017-03-28
2017-01-0389
The durability performance of brake hoses is a crucial issue for such components. Accelerated fatigue testing of brake hoses is necessary for understanding achievable lifetime, actually computation of durability is quite cumbersome due to the many different materials the hoses are made from. Despite SAE standards are available, accelerated testing of brake hoses subject to actual torsional and bending stresses seem important to provide relevant feedback to designers. In this paper, an innovative methodology for assessing the fatigue behavior of brake hoses of road vehicles is proposed. A dynamic testbed is specifically designed and realized, able to reproduce the actual assembly conditions of the hoses fitted into a vehicle suspension. The designed testbed allows to replicate actual loading conditions on the brake hoses by simulating the vertical dynamics and steering of the suspension system together with brake pressure.
Technical Paper

Analysis of ABS/ESP Control Logics Using a HIL Test Bench

2011-04-12
2011-01-0032
Electronic Stability Program (ESP) and Antilock Braking System (ABS) are nowadays a standard equipment for passenger cars. ESP increases vehicle safety by applying differential braking torque to the wheels while cornering, thus it extends the area of intervention of ABS which prevents the wheels from being locked up in emergency braking, especially on low friction road surfaces, allowing the driver to maintain steering control of the vehicle, to avoid obstacles and to reduce vehicle stopping distance on most road surfaces. This paper describes a flexible mechatronic test bench for ESP/ABS Electronic Control Unit (ECU) based on Hardware-In-the-Loop (HIL) simulation technique. It consists of a passenger car hydraulic braking system (from master cylinder to brake calipers), with the ESP/ABS ECU integrated and a flexible real-time platform, which simulates vehicle dynamics.
Technical Paper

Analytical and Experimental Handling Performance of Ultra-Efficient Lightweight Vehicles

2023-08-28
2023-24-0135
The rising environmental awareness has led to a growing interest in electric and lightweight vehicles. Four-wheeled Ultra-Efficient Lightweight Vehicles (UELVs) have the potential to improve the quality of urban life, reduce environmental impact and make efficient use of land. However, the safety of these vehicles in terms of dynamic behaviour needs to be better understood. This paper aims to provide a quantitative assessment of the handling behaviour of UELVs. An analytical single-track model and a numerical simulation by VI-CarRealTime are analysed to evaluate the dynamic performance of a UELV compared to a city car. This analysis shows that the lightweight vehicle has a higher readiness (i.e. lower reaction time to yaw rate) for step steering and lower steering effort (i.e. higher steady-state value). Experimental analysis through real-time driving sessions on the Dynamic Driving Simulator assesses vehicle responses and subjective perception for different manoeuvres.
Journal Article

Anodization: Recent Advancements on Corrosion Protection of Brake Calipers

2020-10-05
2020-01-1626
Brake calipers for high-end cars are typically realized using Aluminum alloys, with Silicon as the most common alloying element. Despite the excellent castability and machinability of Aluminum-Silicon alloys (AlSix), anodization is often required in order to increase its corrosion resistance. This is particularly true in Chlorides-rich environments where Aluminum can easily corrode. Even if anodization process is known for almost 100 years, anodization of AlSix -based materials is particularly challenging due to the presence of eutectic Silicon precipitates. These show a poor electric conductivity and a slow oxidation kinetics, leading to inhomogeneous anodic layers. Continuous research and process optimization are required in order to develop anodic layers with enhanced morphological and electrochemical properties, targeting a prolonged resistance of brake calipers under endurance corrosive tests (e.g. >1000 hours Neutral Salt Spray (NSS) tests).
Technical Paper

Application of a CFD Methodology for the Design of PEM Fuel Cell at the Channel Scale

2024-04-09
2024-01-2186
Polymer electrolyte membrane (PEM) fuel cells will play a crucial role in the decarbonization of the transport sector, in particular for heavy duty applications. However, performance and durability of PEMFC stacks is still a concern especially when operated under high power density conditions, as required in order to improve the compactness and to reduce the cost of the system. In this context, the optimization of the geometry of hydrogen and air distributors represents a key factor to improve the distribution of the reactants on the active surface, in order to guarantee a proper water management and avoiding membrane dehydration.
Technical Paper

Assessment of Actuator Line and Rotor Disk as Alternative Approaches for the Numerical Simulation of Rotating Wheels

2023-04-11
2023-01-0844
Wheel and wheelhouses contribute up to 20-30% of the aerodynamic drag of passenger cars. Simulating the flow field around wheels is challenging due to the complexity of the flow structures generated by tires and rims, wheel rotation, tire deformation and contact with the ground. High accuracy is usually obtained with transient simulations that treat rim rotation with the Sliding Mesh (SM) approach, which is also computationally expensive. Previous studies have confirmed that the application of a tangential velocity component to the rim surface is unphysical for open rims, while a Moving Reference Frame (MRF) is lacking accuracy and the averaged results depend on the initial spokes position. These methods do not consider the dynamic nature of the problem. This work proposes the use of the Actuator Line (AL) and Rotor Disk (RD) approaches as alternatives for simulating open rims with much lower computational cost.
Technical Paper

Automatic Mech Generation for Full-Cycle CFD Modeling of IC Engines: Application to the TCC Test Case

2014-04-01
2014-01-1131
The definition of a robust methodology to perform a full-cycle CFD simulation of IC engines requires as first step the availability of a reliable grid generation tool, which does not only have to guarantee a high quality mesh but also has to prove to be efficient in terms of required time. In this work the authors discuss a novel approach entirely based on the OpenFOAM technology, in which the available 3D grid generator was employed to automatically create meshes containing hexahedra and split-hexahedra from triangulated surface geometries in Stereolithography (STL) format. The possibility to introduce local refinements and boundary layers makes this tool suitable for IC engine simulations. Grids are sequentially generated at target crank angles which are automatically determined depending on user specified settings such as maximum mesh validity interval and quality parameters like non-orthogonality, skewness and aspect ratio.
Technical Paper

CFD Investigation of the Impact of Electrical Heating on the Light-off of a Diesel Oxidation Catalyst

2018-04-03
2018-01-0961
In the last years, as a response to the more and more restrictive emission legislation, new devices (SRC, DOC, NOx-trap, DPF) have been progressively introduced as standard components of modern after-treatment system for Diesel engines. In addition, the adoption of electrical heating is nowadays regarded with interest as an effective solution to promote the light-off of the catalyst at low temperature, especially at the start-up of the engine and during the low load operation of the engine typical of the urban drive. In this work, a state-of-the-art 48 V electrical heated catalyst is considered, in order to investigate its effect in increasing the abatement efficiency of a standard DOC. The electrical heating device considered is based on a metallic support, arranged in a spiral layout, and it is heated by the Joule effect due to the passage of the electrical current.
Technical Paper

CFD Modeling and Validation of the ECN Spray G Experiment under a Wide Range of Operating Conditions

2019-09-09
2019-24-0130
The increasing diffusion of gasoline direct injection (GDI) engines requires a more detailed and reliable description of the phenomena occurring during the fuel injection process. As well known the thermal and fluid-dynamic conditions present in the combustion chamber greatly influence the air-fuel mixture process deriving from GDI injectors. GDI fuel sprays typically evolve in wide range of ambient pressure and temperatures depending on the engine load. In some particular injection conditions, when in-cylinder pressure is relatively low, flash evaporation might occur significantly affecting the fuel-air mixing process. In some other particular injection conditions spray impingement on the piston wall might occur, causing high unburned hydrocarbons and soot emissions, so currently representing one of the main drawbacks of GDI engines.
Technical Paper

CFD Modelling of Gasoline Sprays

2005-09-11
2005-24-086
A comprehensive model for sprays emerging from high pressure swirl injectors for GDI engine application has been developed. The primary and secondary atomization mechanism as well as the evaporation process both in standard and superheated conditions are taken into account. The spray modelling after the injection is based on the Liquid Instability Sheet Atomization (LISA) approach, modified to correctly predict the liquid sheet thickness at the breakup length. The effect of different values of the superheat degree on evaporation and impact on the spray distribution and fuel-air mixing is analyzed. Comparisons with experimental data show good agreements under atmospheric conditions and with different superheated degrees, while some discrepancies occur under higher ambient pressures.
X