Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Technical Paper

ANNIE, a Tool for Integrating Ergonomics in the Design of Car Interiors

1999-09-28
1999-01-3372
In the ANNIE project - Applications of Neural Networks to Integrated Ergonomics - BE96-3433, a tool for integrating ergonomics into the design process is developed. This paper presents some features in the current ANNIE as applied to the design of car interiors. A variant of the ERGOMan mannequin with vision is controlled by a hybrid system for neuro-fuzzy simulation. It is trained by using an Elite system for registration of movements. An example of a trajectory generated by the system is shown. A fuzzy model is used for comfort evaluation. An experiment was performed to test its feasibility and it showed very promising results.
Technical Paper

Analytical and Experimental Handling Performance of Ultra-Efficient Lightweight Vehicles

2023-08-28
2023-24-0135
The rising environmental awareness has led to a growing interest in electric and lightweight vehicles. Four-wheeled Ultra-Efficient Lightweight Vehicles (UELVs) have the potential to improve the quality of urban life, reduce environmental impact and make efficient use of land. However, the safety of these vehicles in terms of dynamic behaviour needs to be better understood. This paper aims to provide a quantitative assessment of the handling behaviour of UELVs. An analytical single-track model and a numerical simulation by VI-CarRealTime are analysed to evaluate the dynamic performance of a UELV compared to a city car. This analysis shows that the lightweight vehicle has a higher readiness (i.e. lower reaction time to yaw rate) for step steering and lower steering effort (i.e. higher steady-state value). Experimental analysis through real-time driving sessions on the Dynamic Driving Simulator assesses vehicle responses and subjective perception for different manoeuvres.
Journal Article

Anodization: Recent Advancements on Corrosion Protection of Brake Calipers

2020-10-05
2020-01-1626
Brake calipers for high-end cars are typically realized using Aluminum alloys, with Silicon as the most common alloying element. Despite the excellent castability and machinability of Aluminum-Silicon alloys (AlSix), anodization is often required in order to increase its corrosion resistance. This is particularly true in Chlorides-rich environments where Aluminum can easily corrode. Even if anodization process is known for almost 100 years, anodization of AlSix -based materials is particularly challenging due to the presence of eutectic Silicon precipitates. These show a poor electric conductivity and a slow oxidation kinetics, leading to inhomogeneous anodic layers. Continuous research and process optimization are required in order to develop anodic layers with enhanced morphological and electrochemical properties, targeting a prolonged resistance of brake calipers under endurance corrosive tests (e.g. >1000 hours Neutral Salt Spray (NSS) tests).
Journal Article

Bifurcation Analysis of a Car Model Running on an Even Surface - A Fundamental Study for Addressing Automomous Vehicle Dynamics

2017-03-28
2017-01-1589
The paper deals with the bifurcation analysis of a simple mathematical model describing an automobile running on an even surface. Bifurcation analysis is adopted as the proper procedure for an in-depth understanding of the stability of steady-state motion of cars (either cornering or running straight ahead). The aim of the paper is providing the fundamental information for inspiring further studies on vehicle dynamics with or without a human driver. The considered mechanical model of the car has two degrees of freedom, nonlinear tire characteristics are included. A simple driver model is introduced. Experimental validations of the model are produced. As a first step, bifurcation analysis is performed without driver (fixed control). Ten different combinations of front and rear tire characteristics (featuring understeer or oversteer automobiles) are considered. Steering angle and speed are varied. Many different dynamical behaviors of the model are found.
Journal Article

Cathodic Protection of Brake System Components

2021-10-11
2021-01-1275
The work investigates the use of cathodic protection -based strategies (e.g. sacrificial anodes) with the aim of extending the corrosion resistance of Aluminum components to be used in disc brake systems. Lab-scale electrochemical measurements, including voltammetry and zero resistance ammetry (ZRA), are used to: a) define the requirements of a cathodic protection system for a 42200 Aluminum alloy; b) evaluate the protection capability of a Zn-based sacrificial anode; and c) demonstrate an extended corrosion resistance of the protected part even in the presence of a galvanic coupling, with respect to the unprotected condition.
Technical Paper

Dynamic Tests of Racing Seats and Simulation with Vedyac Code

1998-11-16
983059
Dynamic tests have been performed on carbon fiber racing seats following the FIA regulations. The tests have shown, in rear impact tests, a relatively strong rebound leading to large forward bending of neck, and, in side impact tests, very large lateral displacement of the head, the latter protruding dangerously towards hard portions of the car structure. Stiffening the seat back by steel struts results in reducing strongly both the motion and the acceleration of the head. Simulations of the dynamics of the tests have been done with multi-body models, including the Hybrid III dummy and seat deflection, by means of the program VEDYAC. It has been found that computer simulation can predict very accurately the result of a test, provided the numerical models have been carefully calibrated to match the dummy tolerance bands. Once they have been calibrated and validated with a number of tests, the computer models can be very useful to extend the test results to different test conditions.
Technical Paper

Evolution of the Ride Comfort of Alfa Romeo Cars since 1955 until 2005

2017-03-28
2017-01-1484
The ride comfort of three Alfa Romeo cars, namely Giulietta (1955), Alfetta (1972) and 159 (2005) has been assessed both objectively and subjectively. The three cars belong to the same market segment. The aim is to let young engineers or graduate students understand how technology has evolved and eventually learn a lesson from the assessed trend. A number of cleats have been fixed at the ground and the three cars have traversed such uneven surface. The objective assessment of the ride comfort has been performed by means of accelerometers fixed at the seat rails, additionally a special dummy developed at Politecnico di Milano has been employed. The subjective assessment has been performed by a panel of passengers. The match between objective and subjective ratings is very good. Simple mathematical models have been employed to establish a (successful) comparison between experimental and computational results. The ride comfort differs substantially among the cars.
Technical Paper

Influence of Iron and Manganese on the Mechanical Properties and Microstructure of a Recycled EN AC-43200 Aluminium-Silicon Alloy

2023-11-05
2023-01-1880
The work investigates the effect of different Iron and Manganese contents in ad-hoc cast specimens made from recycled EN AC-43200 alloy. Tensile tests and metallographic analyses coupled with energy dispersive X-ray spectroscopy measurements are carried out to elucidate the interplay between the microstructure and the quasi-static properties of the Aluminium-Silicon alloy under investigation. A strong correlation between the composition and morphology of Fe/Mn -based intermetallic precipitates and tensile properties is demonstrated. Moreover, it is found that specific intermetallic phases are present only for certain, relative and/or absolute contents of Fe and Mn.
Technical Paper

Instrumented Steering Wheel for Accurate ADAS Development

2019-04-02
2019-01-1241
We introduce in this paper a new Instrumented Steering Wheel (ISW) for ADAS development. The ISW has been designed, constructed and employed with satisfactory results. The ISW is able to measure three forces, three moments and the grip force at each hand of the driver. The ISW has been used for ADAS activities on an instrumented road vehicle. The aim was to use both the vehicle states and the ISW data for evaluating the driver behaviour. Two research activities were performed. The first activity refers to monitoring the driver behaviour during tests on a track. The second activity refers to the use of haptic ISWs, able to improve the ADAS systems. Referring to the first activity, the greatest majority of drivers applied always the same sequence of forces (pull, radial, tangential) either during emergency manoeuvres, either during slow speed curving.
Technical Paper

Lightweight Design and Construction of Aluminum Wheels

2016-04-05
2016-01-1575
In this paper the lightweight design and construction of road vehicle aluminum wheels is dealt with, referring particularly to safety. Dedicated experimental tests aimed at assessing the fatigue life behavior of aluminum alloy A356 - T6 have been performed. Cylindrical specimens have been extracted from three different locations in the wheel. Fully reversed strain-controlled and load-controlled fatigue tests have been performed and the stress/strain-life curves on the three areas of the wheel have been computed and compared. The constant amplitude rotary bending fatigue test of the wheel has been simulated by means of Finite Element method. The FE model has been validated by measuring the strain at several points of the wheel during the actual test. From the FE model, the stress tensor time history on the whole wheel over a loading cycle has been extracted.
Technical Paper

Numerical Investigation of the Vertical Dynamics of an Agricultural Vehicle Operating on Deformable Soil

2012-04-16
2012-01-0764
This work focuses on the analysis of the vertical dynamics of an agricultural tractor, investigating the influence of suspensions' parameters on riding comfort and contact forces. The use of lugged tires coupled with the operation over banked, irregular and deformable tracks, determines significant levels of vertical acceleration over several components of the tractor. These operating conditions have a direct effect on the driver, whose alertness and efficiency are undermined by the exposure to high levels of acceleration for a long time. Secondly, variations of the normal and traction forces provided by the tires affect the quality of tillage and other operations. The paper presents a multi-body vehicle model of a tractor interfaced with a tire-soil contact model allowing to take into account soil's deformation and tread pattern design.
Technical Paper

On the Impact of the Maximum Available Tire-Road Friction Coefficient Awareness in a Brake-Based Torque Vectoring System

2010-04-12
2010-01-0116
Tire-road interaction is one of the main concerns in the design of control strategies for active/semi-active differentials oriented to improve handling performances of a vehicle. In particular, the knowledge of the friction coefficient at the tire-road interface is crucial for achieving the best performance in any working condition. State observers and estimators have been developed at the purpose, based on the measurements traditionally carried out on board vehicle (steer angle, lateral acceleration, yaw rate, wheels speed). However, until today, the problem of tire-road friction coefficient estimation (and especially of its maximum value) has not completely been solved. Thus, active control systems developed so far rely on a driver manual selection of the road adherence condition (anyway characterized by a rough and imprecise quality) or on a conservative tuning of the control logic in order to ensure vehicle safety among different tire-road friction coefficients.
Technical Paper

Preliminary Design of a Bio-Regenerative ECLSS Technological Demo Plant for Air and Water Management

2008-06-29
2008-01-2013
Future human exploration roadmaps involve the development of temporary or permanent outposts on Moon and Mars. The capability of providing astronauts with proper conditions for living and working in extraterrestrial environments is therefore a key issue for the sustainability of those roadmaps, and closed-loop Environment Control and Life Support Systems (ECLSSs) and bio-regenerative plants represent the necessary evolution of current technologies for complying with the challenging requirements imposed. This paper presents the architectural design of a terrestrial plant to be exploited to test and validate air and water management technologies for a biological life support system in a closed environment. The plant includes a crew area and a plant growth area. These two spaces can be considered as either a unique volume or two separated environments with reduced contact, e.g. for plant harvesting or other up-keeping activities.
Journal Article

Race Motorcycle Smart Wheel

2015-04-14
2015-01-1520
A wheel able to measure the generalized forces at the hub of a race motorcycle has been developed and used. The wheel has a very limited mass. It is made from magnesium with a special structure to sense the forces and provide the required level of stiffness. The wheel has been tested both indoor for preliminary approval and on the track. The three forces and the three moments acting at the hub can be measured with a resolution of 1N and 0.3Nm respectively. A specifically programmed DSP (Digital Signal Processor) embedded in the sensor allows real-time acquisition and processing of the six signals of forces/torques components. The signals are sent via Bluetooth to an onboard receiver connected to the vehicle CAN (Controller Area Network) bus. Each signal is sampled at 200Hz. The wheel can be used to derive the actual tyre characteristics or to record the loads acting at the hub.
Technical Paper

Subjective-Objective Ride Comfort Assessment of Farm Tractors

2016-04-05
2016-01-1437
The paper is focused on both the subjective and the objective ride comfort evaluation of farm tractors. The experimental measurement of the relevant accelerations occurring at the tractor body, at the cabin and at the seat was performed on a number of different farm tractors. A subjective rating of the ride comfort level was performed by considering five different drivers. The comfort index was computed according with ISO 2631 and other standards. The acceleration of the seated subject was computed by means of a proper mechanical model of a farm tractor and derived at different positions on the subject body. It turned out that the acceleration of the lower torso was particularly relevant for establishing a matching between the subjective perception and the objective measurement and computation. A number of indices have been derived from the measured data which are able to correlate the subjective driver feeling with the measured accelerations.
Technical Paper

Tempered Wire Fatigue Testing

2019-04-02
2019-01-0532
A new bench for the rotating bending fatigue tests of tempered steel wires is presented. The new bench is used to check the spring wire just before it is finally winded to realize a spring. The bench is basically a four-point bending machine. There are two main differences with respect to current bending machines. The first one is that the focus is on semi-finished components (more than 1 meter long), rather than standard small-scale specimens. The second one is that there is a non-linear configuration of the tested component due to its length. The bench design has provided some unreferenced features that make the bench quite accurate and effective in producing quick fatigue assessments. A rotor-dynamic study has allowed to perform tests at 50 Hz. As a preliminary application, some fatigue bending tests of tempered steel wires are described and discussed.
Journal Article

Theoretical and Experimental Ride Comfort Assessment of a Subject Seated into a Car

2010-04-12
2010-01-0777
A comprehensive research is presented aiming at assessing the ride comfort of subjects seated into road or off-road vehicles. Although many papers and books have appeared in the literature, many issues on ride comfort are still to be understood, in particular, the paper investigates the mutual effects of the posture and the vibration caused mostly from road unevenness. The paper is divided into two parts. In the first part, a mathematical model of a seated subject is validated by means of actual measurements on human subjects riding on a car. Such measurements refer to the accelerations acting at the subject/seat interface (vertical acceleration at the seat cushion and horizontal acceleration at the seat back). A proper dummy is used to derive the seat stiffness and damping.
X