Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

26,500km Down the Pan-American Highway in an Electric Vehicle A Battery's Perspective

2012-04-16
2012-01-0123
This paper presents a novel battery degradation model based on empirical data from the Racing Green Endurance project. Using the rainflow-counting algorithm, battery charge and discharge data from an electric vehicle has been studied in order to establish more reliable and more accurate predictions for capacity and power fade of automotive traction batteries than those currently available. It is shown that for the particular lithium-iron phosphate (LiFePO₄) batteries, capacity fade is 5.8% after 87 cycles. After 3,000 cycles it is estimated to be 32%. Both capacity and power fade strongly depend on cumulative energy throughput, maximum C-rate as well as temperature.
Technical Paper

3D CFD Analysis of the Influence of Some Geometrical Engine Parameters on Small PFI Engine Performances - The Effects on Tumble Motion and Mean Turbulent Intensity Distribution

2012-10-23
2012-32-0096
In scooter/motorbike engines coherent and stable tumble motion generation is still considered an effective mean in order to both reduce engine emissions and promote higher levels of combustion efficiency. The scientific research also assessed that squish motion is an effective mean for speeding up the combustion in a combustion process already fast. In a previous technical paper the authors demonstrated that for an engine having a high C/D ratio the squish motion is not only not necessary but also detrimental for the stability of the tumble motion itself, because there is a strong interaction between these two motions with the consequent formation of secondary vortices, which in turn penalizes the tumble breakdown and the turbulent kinetic energy production.
Technical Paper

3D Large Scale Simulation of the High-Speed Liquid Jet Atomization

2007-04-16
2007-01-0244
In this paper three-dimensional Large Eddy Simulations (i.e., LES) by using a PLIC-VOF method have been adopted to investigate the atomization process of round liquid jets issuing from automotive multi-hole injector-like nozzles. LES method is used to compute directly the effect of the large flow structure, being the smallest one modelled. A mesh having a cell size of 4 μm was used in order to derive a statistics of the detached liquid structures, i.e. droplets and ligaments. The latter have been identified by using an algorithm coded by authors. Cavitation modeling has not been included in the present computations. Two different mean injection nozzle flow velocities of 50 m/s and 270 m/s, corresponding to two mean nozzle flow Reynolds numbers of 1600 and 8700, respectively, have been considered in the calculations as representative of laminar and turbulent nozzle flow conditions.
Journal Article

A 1d Model for the Prediction of Flash Atomization in Gdi Multi-Hole Injectors: Preliminary Results

2008-10-06
2008-01-2516
A flash evaporation model is being developed to capture the effects of bubble nucleation and growth inside multi-hole injector nozzles to investigate the flash evaporation in fuel injector sprays in Gasoline Direct Injection (GDI). The 1D flash evaporation model is a key tool for providing the 3D Eulerian-Eulerian or Lagrangian spray simulation model with the right droplet size in order to properly predict the effect of degree of superheating on mixture formation. Super heating conditions are likely to be found under partial load conditions in GDI applications or they might be deliberately induced to enhance fuel atomization and vaporization. A quasi-1D nozzle flow model has been developed to help quantifying the effects of main physical and geometrical parameters in promoting fuel flash evaporation. This model is based on an weakly compressible homogenous two-phase mixture assumption. A non-equilibrium model is used to predict the vapour formation rate along the nozzle.
Technical Paper

A 3D User and Maintenance Manual for UAVs and Commercial Aircrafts Based on Augmented Reality

2015-09-15
2015-01-2473
Traditional User/Maintenance Manuals provide useful information when dealing with simple machines. However, when dealing with complex systems of systems and highly miniaturized technologies, like UAVs, or with machines with millions of parts, a commercial aircraft is a case in point, new technologies taking advantage of Augmented Reality can rapidly and effectively support the maintenance operations. This paper presents a User/Maintenance Manual based on Augmented Reality to help the operator in the detection of parts and in the sequence to be followed to assemble/disassemble systems and subsystems. The proposed system includes a handheld device and/or an head mounted display or special goggles, to be used by on-site operators, with software management providing data fusion and overlaying traditional 2D user/maintenance manual information with an augmented reality software and appropriate interface.
Technical Paper

A Chemical-Kinetic Approach to the Definition of the Laminar Flame Speed for the Simulation of the Combustion of Spark-Ignition Engines

2017-09-04
2017-24-0035
The laminar burning speed is an important intrinsic property of an air-fuel mixture determining key combustion characteristics such as turbulent flame propagation. It is a function of the mixture composition (mixture fraction and residual gas mass fraction) and of the thermodynamic conditions. Experimental measurements of Laminar Flame Speeds (LFS) are common in literature, but initial pressure and temperature are limited to low values due to the test conditions: typical pressure values for LFS detection are lower than 25 bar, and temperature rarely exceeds 550 K. Actual trends in spark ignition engines are to increase specific power output by downsizing and supercharging, thus the flame front involves even more higher pressure and temperature since the beginning of combustion.
Technical Paper

A Comparison between Caster and Lean Angle in Generating Variable Camber

2015-03-10
2015-01-0067
A variation in the camber of an automotive wheel is desired to compensate a side-slip force change owing to normal load transfer when the car is cornering. The camber of a steered wheel can be varied by adjusting caster or lean angle which are the representations of steering axis orientation. Thus, a smart camber can be created by a variable caster or lean angle. Choosing which parameter among the two angles to be variable is very important and dependent on its different effects. Here, homogeneous transformation is employed to establish camber as a function of caster, lean angle, and steering angle in the general case. A comparison between caster and lean angle based on different criteria is then made. The comparison shows that a variable caster is much better and more feasible than a variable lean angle in generating a smart camber.
Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

2017-03-28
2017-01-0837
Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Journal Article

A Control-Oriented Knock Intensity Estimator

2017-09-04
2017-24-0055
The performance optimization of modern Spark Ignition engines is limited by knock occurrence: heavily downsized engines often are forced to work in the Knock-Limited Spark Advance (KLSA) range. Knock control systems monitor the combustion process, allowing to achieve a proper compromise between performance and reliability. Combustion monitoring is usually carried out by means of accelerometers or ion sensing systems, but recently the use of cylinder pressure sensors is also becoming frequent in motorsport applications. On the other hand, cylinder pressure signals are often available in the calibration stage, where SA feedback-control based on the pressure signal can be used to avoid damages to the engine during automatic calibration. A predictive real-time combustion model could help optimizing engine performance, without exceeding the allowed knock severity.
Technical Paper

A Data-driven Approach for Enhanced On-Board Fault Diagnosis to Support Euro 7 Standard Implementation

2024-04-09
2024-01-2872
The European Commission is going to publish the new Euro7 standard shortly, with the target of reducing the impact on pollutant emissions due to transportation systems. Besides forcing internal combustion engines to operate cleaner in a wider range of operating conditions, the incoming regulation will point out the role of On-Board Monitoring (OBM) as a key enabler to ensure limited emissions over the whole vehicle lifetime, necessarily taking into account the natural aging of involved systems and possible electronic/mechanical faults and malfunctions. In this scenario, this work aims to study the potential of data-driven approaches in detecting emission-relevant engine faults, supporting standard On-Board Diagnostics (OBD) in pinpointing faulty components, which is part of the main challenges introduced by Euro7 OBM requirements.
Technical Paper

A Flow and Loading Coefficient-Based Compressor Map Interpolation Technique for Improved Accuracy of Turbocharged Engine Simulations

2017-09-04
2017-24-0023
Internal combustion engines are routinely developed using 1D engine simulation tools. A well-known limitation is the accuracy of the turbocharger compressor and turbine sub-models, which rely on hot gas bench-measured maps to characterize performance. Such discrete map data is inherently too sparse to be used directly in simulation, and so a preprocessing algorithm interpolates and extrapolates the data to generate a wider, more densely populated map. Methods used for compressor map interpolation vary. They may be mathematical or physical in nature, but there is no unified approach, except that they typically operate on input map data in SAE format. For decades it has been common practice for turbocharger suppliers to share performance data with engine OEMs in this form. This paper describes a compressor map interpolation technique based on the nondimensional compressor flow and loading coefficients, instead of SAE-format data.
Journal Article

A Global Optimal Energy Management System for Hybrid Electric off-road Vehicles

2017-03-28
2017-01-0425
Energy management strategies greatly influence the power performance and fuel economy of series hybrid electric tracked bulldozers. In this paper, we present a procedure for the design of a power management strategy by defining a cost function, in this case, the minimization of the vehicle’s fuel consumption over a driving cycle. To explore the fuel-saving potential of a series hybrid electric tracked bulldozer, a dynamic programming (DP) algorithm is utilized to determine the optimal control actions for a series hybrid powertrain, and this can be the benchmark for the assessment of other control strategies. The results from comparing the DP strategy and the rule-based control strategy indicate that this procedure results in approximately a 7% improvement in fuel economy.
Technical Paper

A Mesh Based Approach for Unconventional Unmanned Airship Added Masses Computation

2013-09-17
2013-01-2191
Added masses computation is a crucial aspect to be considered when the density of a body moving in a fluid is comparable to the density of the fluid displaced: added mass can be defined as the inertia added to a system because an accelerating or decelerating body displaces some volume of neighboring fluid as it moves through it. The motion of vehicles like airships and ships can be addressed only by keeping into account the effect of added masses, while in case of aircrafts and helicopters this contribution is usually neglected. Lighter Than Air flight simulation, unmanned airships flight control system, airships flight dynamics are typical applications in which added masses are fundamental to achieve an effective and realistic modeling. A panel based method using the mesh of an airship external shape is developed to account for the added massed.
Technical Paper

A Method of Flow Measurement About Full-Scale and Model-Scale Vehicles

2000-03-06
2000-01-0871
High-frequency pressure probes were used to map the airflow around a full-scale truck during on-road testing and around a model-scale truck during wind tunnel testing. Several configurations were tested during each type of testing. Results are presented for on-road ‘pass-by’ tests and detail velocity and coefficient of pressure variation alongside the truck at different heights. The wind tunnel data are results of flow mapping about a 10% scale model and show the velocity and coefficient of pressure distribution under and around the model truck for different configurations.
Technical Paper

A Methodology for In-Cylinder Flow Field Evaluation in a Low Stroke-to-Bore SI Engine

2002-03-04
2002-01-1119
This paper presents a methodology for the 3D CFD simulation of the intake and compression processes of four stroke internal combustion engines.The main feature of this approach is to provide very accurate initial conditions by means of a cost-effective initialization step. Calculations are applied to a low stroke-to-bore SI engine, operated at full load and maximum engine speed. It is demonstrated that initial conditions for this kind of engines have an important influence on flow field development, particularly in terms of mean velocities close to the firing TDC. Simulation results are used to discuss the choice of a set of parameters for the flow field characterization of low stroke-to-bore engines, as well as to provide an insight into the flow patterns during the overlapping period.
Technical Paper

A Model of Deploying Engineering Capability of Aerospace Suppliers in Producibility Analysis

1999-06-05
1999-01-2298
Aerospace companies have formed integrated product teams to improve their new product introduction process. Where significant components are outsourced, the suppliers’ expertise should be harnessed for a “win-win” solution to benefit both customer and supplier. CE practices for remote team work have been developed and used in a component engineering contract between a customer-supplier pair in the United Kingdom. Details of the producibility interaction dialogue between design team and supplier production engineers were captured. The resulting model represents the deployment of engineering capability of aerospace suppliers. It supports the setting up of CE projects with subcontract engineering work and is a reference for suppliers to develop their design/engineering capability.
Technical Paper

A Naturally Aspirated Four Stroke Racing Engine with One Intake and One Exhaust Horizontal Rotary Valve per Cylinder and Central Direct Injection and Ignition by Spark or Jet

2015-03-10
2015-01-0006
The paper discusses the benefits of a four stroke engine having one intake and one exhaust rotary valve. The rotary valve has a speed of rotation half the crankshaft and defines an open passage that may permit up to extremely sharp opening or closing and very large gas exchange areas. The dual rotary valve design is applied to a racing engine naturally aspirated V-four engine of 1000cc displacement, gasoline fuelled with central direct injection and spark ignition. The engine is then modeled by using a 1D engine & gas dynamics simulation software package to assess the potentials of the solution. The improved design produces much larger power densities than the version of the engines with traditional poppet valves revving at higher speeds, with reduced frictional losses, and with larger gas exchange areas while also improving the fuel conversion efficiency thanks to the sharpness of opening or closing events.
Journal Article

A New De-throttling Concept in a Twin-Charged Gasoline Engine System

2015-04-14
2015-01-1258
Throttling loss of downsized gasoline engines is significantly smaller than that of naturally aspirated counterparts. However, even the extremely downsized gasoline engine can still suffer a relatively large throttling loss when operating under part load conditions. Various de-throttling concepts have been proposed recently, such as using a FGT or VGT turbine on the intake as a de-throttling mechanism or applying valve throttling to control the charge airflow. Although they all can adjust the mass air flow without a throttle in regular use, an extra component or complicated control strategies have to be adopted. This paper will, for the first time, propose a de-throttling concept in a twin-charged gasoline engine with minimum modification of the existing system. The research engine model which this paper is based on is a 60% downsized 2.0L four cylinder gasoline demonstrator engine with both a supercharger and turbocharger on the intake.
Technical Paper

A New Turboexpansion Concept in a Twin-Charged Engine System

2014-10-13
2014-01-2596
Engines equipped with pressure charging systems are more prone to knock partly due the increased intake temperature. Meanwhile, turbocharged engines when operating at high engine speeds and loads cannot fully utilize the exhaust energy as the wastegate is opened to prevent overboost. The turboexpansion concept thus is conceived to reduce the intake temperature by utilizing some otherwise unexploited exhaust energy. This concept can be applied to any turbocharged engines equipped with both a compressor and a turbine-like expander on the intake loop. The turbocharging system is designed to achieve maximum utilization of the exhaust energy, from which the intake charge is over-boosted. After the intercooler, the turbine-like expander expands the over-compressed intake charge to the required plenum pressure and reduces its temperature whilst recovering some energy through the connection to the crankshaft.
Technical Paper

A Novel Approach to Cooperative and Non-Cooperative RPAS Detect-and-Avoid

2015-09-15
2015-01-2470
A unified approach to cooperative and non-cooperative Detect-and-Avoid (DAA) is a key enabler for Remotely Piloted Aircraft System (RPAS) to safely and routinely access all classes of airspace. In this paper state-of-the-art cooperative and non-cooperative DAA sensor/system technologies for manned aircraft and RPAS are reviewed and the associated multi-sensor data fusion techniques are discussed. A DAA system architecture is presented based on Boolean Decision Logics (BDL) for selecting non-cooperative and cooperative sensors/systems including both passive and active Forward Looking Sensors (FLS), Traffic Collision Avoidance System (TCAS) and Automatic Dependent Surveillance - Broadcast (ADS-B). After elaborating the DAA system processes, the key mathematical models associated with both non-cooperative and cooperative DAA functions are presented.
X