Refine Your Search

Topic

Author

Search Results

Journal Article

3D-CFD RANS Methodology to Predict Engine-Out Emissions with Gasoline-Like Fuel and Methanol for a DISI Engine

2022-09-16
2022-24-0038
Renewable fuels, such as bio- and e-fuels, are of great interest for the defossilization of the transport sector. Among these fuels, methanol represents a promising candidate for emission reduction and efficiency increase due to its very high knock resistance and its production pathway as e-fuel. In general, reliable simulation tools are mandatory for evaluating a specific fuel potential and optimizing combustion systems. In this work, a previously presented methodology (Esposito et al., Energies, 2020) has been refined and applied to a different engine and different fuels. Experimental data measured with a single cylinder engine (SCE) are used to validate RANS 3D-CFD simulations of gaseous engine-out emissions. The RANS 3D-CFD model has been used for operation with a toluene reference fuel (TRF) gasoline surrogate and methanol. Varying operating conditions with exhaust gas recirculation (EGR) and air dilution are considered for the two fuels.
Technical Paper

Advanced Functional Pulse Testing of a Two-Stage VCR-System

2019-04-02
2019-01-1195
Two-stage variable compression ratio (VCR) systems for spark ignited engines offer a CO2 reduction potential of approx. 5%. Due to their modularity, connecting rod based VCR-systems can be integrated into existing engine assembly systems, where engines can be built in parallel with or without such a system, depending on performance and market requirements. In order to comply with the new RDE emission standards with high specific power engine variants, VCR systems enable high load engine operation without fuel enrichment. The interactions between the hydraulic-, mechanical - and oil supply systems of a VCR-system with variable connecting rod length are complex and require a well-developed and adapted layout of all subsystems. This demands the use of tailored measurement and simulation tools during the development and application phases. In this context, Advanced Functional Pulse Testing enables single-parameter analyses of VCR con rods.
Technical Paper

An Experimental Investigation of Combustion and Soot Formation of Sprays from Cluster Nozzles for DI Diesel Engines

2009-04-20
2009-01-0855
One of the basic topics in the design of new injection systems for DI Diesel engines is to decrease the soot emissions. A promising approach to minimize soot production are nozzles with clustered holes. A basic idea of the Cluster Configuration (CC) nozzles is to prevent a fuel rich area in the center of the flame where most of the soot is produced, and to minimize the overall soot formation in this way. For this purpose each hole of a standard nozzle is replaced by two smaller holes. The diameter of the smaller holes is chosen so that the flow rate of all nozzles should be equal. The basic strategy of the cluster nozzles is to provide a better primary break up and therefore a better mixture formation caused by the smaller nozzle holes, but a comparable penetration length of the vapor phase due to merging of the sprays. Three possible arrangements of the clustered holes are investigated in this study. Both the cluster angle and the orientation to the injector axis are varied.
Journal Article

Analysis of Cyclic Variation Using Time-Resolved Tomographic Particle-Image Velocimetry

2020-09-15
2020-01-2021
To achieve the strict legislative restrictions for emissions from combustion engines, vast improvements in engine emissions and efficiency are required. Two major impacting factors for emissions and efficiency are the reliable generation of an effective mixture before ignition and a fast, stable combustion process. While the mixture of air and injected fuel is generated by highly three-dimensional, time-dependent flow phenomena during the intake and compression stroke, the turbulent flame propagation is directly affected by the turbulence level in the flow close to the advancing flame front. However, the flow field in the combustion chamber is highly turbulent and subject to cycle-to-cycle variations (CCV). To understand the fundamental mechanisms and interactions, 3D flow measurements with combined high spatial and temporal resolution are required.
Technical Paper

Analysis of Drivability Influence on Tailpipe Emissions in Early Stages of a Vehicle Development Program by Means of Engine-in-the-Loop Test Benches

2020-04-14
2020-01-0373
Due to increasing environmental awareness, standards for pollutant and CO2 emissions are getting stricter in most markets around the world. In important markets such as Europe, also the emissions during real road driving, so called “Real Driving Emissions” (RDE), are now part of the type approval process for passenger cars. In addition to the proceeding hybridization and electrification of vehicles, the complexity and degrees of freedom of conventional powertrains with internal combustion engines (ICE) are also continuing to increase in order to comply with stricter exhaust emission standards. Besides the different requirements placed on vehicle emissions, the drivability capabilities of passenger vehicles desired by customers, are essentially important and vary between markets.
Journal Article

Analysis of the Emission Conversion Performance of Gasoline Particulate Filters Over Lifetime

2019-09-09
2019-24-0156
Gasoline particulate filters (GPF) recently entered the market, and are already regarded a state-of-the-art solution for gasoline exhaust aftertreatment systems to enable EU6d-TEMP fulfilment and beyond. Especially for coated GPF applications, the prognosis of the emission conversion performance over lifetime poses an ambitious challenge, which significantly influences future catalyst diagnosis calibrations. The paper presents key-findings for the different GPF application variants. In the first part, experimental GPF ash loading results are presented. Ash accumulates as thin wall layers and short plugs, but does not penetrate into the wall. However, it suppresses deep bed filtration of soot, initially decreasing the soot-loaded backpressure. For the emission calibration, the non-linear backpressure development complicates the soot load monitoring, eventually leading to compromises between high safety against soot overloading and a low number of active regenerations.
Technical Paper

Assessment of Different Included Spray Cone Angles and Injection Strategies for PCCI Diesel Engine Combustion

2017-03-28
2017-01-0717
For compliance with legislative regulations as well as restricted resources of fossil fuel, it is essential to further reduce engine-out emissions and increase engine efficiency. As a result of lower peak temperatures and increased homogeneity, premixed Low-Temperature Combustion (LTC) has the potential to simultaneously reduce nitrogen oxides (BSNOx) and soot. However, LTC can lead to higher emissions of unburnt total hydrocarbons (BSTHC) and carbon monoxide (BSCO). Furthermore, losses in efficiency are often observed, due to early combustion phasing (CA50) before top dead center (bTDC). Various studies have shown possibilities to counteract these drawbacks, such as split-injection strategies or different nozzle geometries. In this work, the combination of both is investigated. Three different nozzle geometries with included spray angles of 100°, 120°, and 148° and four injection strategies are applied to investigate the engine performance.
Technical Paper

Assessment of the Approximation Formula for the Calculation of Methane/Air Laminar Burning Velocities Used in Engine Combustion Models

2017-09-04
2017-24-0007
Especially for internal combustion engine simulations, various combustion models rely on the laminar burning velocity. With respect to computational time needed for CFD, the calculation of laminar burning velocities using a detailed chemical mechanism can be replaced by incorporation of approximation formulas, based on rate-ratio asymptotics. This study revisits an existing analytical approximation formula [1]. It investigates applicable temperature, pressure, and equivalence ratio ranges with special focus on engine combustion conditions. The fuel chosen here is methane and mixtures are composed of methane and air. The model performance to calculate the laminar burning velocity are compared with calculated laminar burning velocities using existing state of the art detailed chemical mechanisms, the GRI Mech 3.0 [2], the ITV RWTH [3], and the Aramco mechanism [4].
Journal Article

Assessment of the Full Thermodynamic Potential of C8-Oxygenates for Clean Diesel Combustion

2017-09-04
2017-24-0118
Within the Cluster of Excellence “Tailor-Made Fuels from Biomass” (TMFB) at the RWTH Aachen University, two novel biogenic fuels, namely 1-octanol and its isomer dibutyl ether (DBE), were identified and extensively analyzed in respect of their suitability for combustion in a Diesel engine. Both biofuels feature very different properties, especially regarding their ignitability. In previous works of the research cluster, promising synthesis routes with excellent yields for both fuels were found, using lignocellulosic biomass as source material. Both fuels were investigated as pure components in optical and thermodynamic single cylinder engines (SCE). For 1-octanol at lower part load, almost no soot emission could be measured, while with DBE the soot emissions were only about a quarter of that with conventional Diesel fuel. At high part load (2400 min-1, 14.8 bar IMEP), the soot reduction of 1-octanol was more than 50% and for DBE more than 80 % respectively.
Journal Article

Characterization of Hollow Cone Gas Jets in the Context of Direct Gas Injection in Internal Combustion Engines

2018-04-03
2018-01-0296
Direct injection (DI) compressed natural gas (CNG) engines are emerging as a promising technology for highly efficient and low-emission engines. However, the design of DI systems for compressible gas is challenging due to supersonic flows and the occurrence of shocks. An outwardly opening poppet-type valve design is widely used for DI-CNG. The formation of a hollow cone gas jet resulting from this configuration, its subsequent collapse, and mixing is challenging to characterize using experimental methods. Therefore, numerical simulations can be helpful to understand the process and later to develop models for engine simulations. In this article, the results of high-fidelity large-eddy simulation (LES) of a stand-alone injector are discussed to understand the evolution of the hollow cone gas jet better.
Technical Paper

Comparing Large Eddy Simulation of a Reacting Fuel Spray with Measured Quantitative Flame Parameters

2018-09-10
2018-01-1720
In order to reduce engine out CO2 emissions, it is a main subject to find new alternative fuels from renewable sources. For identifying the specification of an optimized fuel for engine combustion, it is essential to understand the details of combustion and pollutant formation. For obtaining a better understanding of the flame behavior, dynamic structure large eddy simulations are a method of choice. In the investigation presented in this paper, an n-heptane spray flame is simulated under engine relevant conditions starting at a pressure of 50 bar and a temperature of 800 K. Measurements are conducted at a high-pressure vessel with the same conditions. Liquid penetration length is measured with Mie-Scatterlight, gaseous penetration length with Shadowgraphy and lift-off length as well as ignition delay with OH*-Radiation. In addition to these global high-speed measurement techniques, detailed spectroscopic laser measurements are conducted at the n-heptane flame.
Journal Article

Crank-Angle Resolved Real-Time Engine Modelling: A Seamless Transfer from Concept Design to HiL Testing

2018-04-03
2018-01-1245
Virtual system integration and testing using hardware-in-the-loop (HiL) simulation enables front-loading of development tasks, provides a safer and reliable testing environment and reduces prototype hardware costs. One of the greatest challenges to overcome when performing HiL simulations is assuring a high model accuracy under stringent real-time requirements with acceptable development effort. This article represents a novel solution by deriving the plant model for HiL directly from the existing detailed models from the component layout phase using co-simulation methodology. It provides an effective and efficient model implementation and validation process followed by detailed quantitative analysis of the test results referred to the engine test bench measurements.
Journal Article

Development and Demonstration of LNT+SCR System for Passenger Car Diesel Applications

2014-04-01
2014-01-1537
The regulations for mobile applications will become stricter in Euro 6 and further emission levels and require the use of active aftertreatment methods for NOX and particulate matter. SCR and LNT have been both used commercially for mobile NOX removal. An alternative system is based on the combination of these two technologies. Developments of catalysts and whole systems as well as final vehicle demonstrations are discussed in this study. The small and full-size catalyst development experiments resulted in PtRh/LNT with optimized noble metal loadings and Cu-SCR catalyst having a high durability and ammonia adsorption capacity. For this study, an aftertreatment system consisting of LNT plus exhaust bypass, passive SCR and engine independent reductant supply by on-board exhaust fuel reforming was developed and investigated. The concept definition considers NOX conversion, CO2 drawback and system complexity.
Technical Paper

Development of Phenomenological Models for Engine-Out Hydrocarbon Emissions from an SI DI Engine within a 0D Two-Zone Combustion Chamber Description

2021-09-05
2021-24-0008
The increasingly stringent limits on pollutant emissions from internal combustion engine-powered vehicles require the optimization of advanced combustion systems by means of virtual development and simulation tools. Among the gaseous emissions from spark-ignition engines, the unburned hydrocarbon (HC) emissions are the most challenging species to simulate because of the complexity of the multiple physical and chemical mechanisms that contribute to their emission. These mechanisms are mainly three-dimensional (3D) resulting from multi-phase physics - e.g., fuel injection, oil-film layer, etc. - and are difficult to predict even in complex 3D computational fluid-dynamic (CFD) simulations. Phenomenological models describing the relationships between the physical-chemical phenomena are of great interest for the modeling and simplification of such complex mechanisms.
Journal Article

Effects of Cavitation and Hydraulic Flip in 3-Hole GDI Injectors

2017-03-28
2017-01-0848
The performance of Gasoline Direct Injection (GDI) engines is governed by multiple physical processes such as the internal nozzle flow and the mixing of the liquid stream with the gaseous ambient environment. A detailed knowledge of these processes even for complex injectors is very important for improving the design and performance of combustion engines all the way to pollutant formation and emissions. However, many processes are still not completely understood, which is partly caused by their restricted experimental accessibility. Thus, high-fidelity simulations can be helpful to obtain further understanding of GDI injectors. In this work, advanced simulation and experimental methods are combined in order to study the spray characteristics of two different 3-hole GDI injectors.
Technical Paper

Efficient Recuperation of Kinetic Energy - Hybrid Versus Hydrostatic Approach

2007-10-30
2007-01-4153
This paper analyzes different concepts for storage and recuperation of kinetic energy during braking operation in a forklift truck application. The reduction of fuel consumption is one of the challenges for on and off-road vehicles. Starting from a conventional hydrostatic transmission, secondary hydraulic control and a hybrid solution are investigated. Wasting kinetic energy during braking operation of mobile working machines in cyclic applications and converting it into heat energy instead of reusable energy is a very inefficient principle still used in industry. Rising energy costs, enhanced government guidelines and increased environmental awareness require more efficient drive concepts for the next decades. Recuperation of kinetic energy during braking operation provides the opportunity of increasing the efficiency of mobile working machines. Efficient recuperation of kinetic energy requires a proper application and a low-loss system design.
Journal Article

Experimental Analysis of the Impact of Injected Biofuels on In-Cylinder Flow Structures

2016-05-18
2016-01-9043
The interaction of biofuel sprays from an outward opening hollow cone injector and the flow field inside an internal combustion engine is analyzed by Mie-Scattering Imaging (MSI) and high-speed stereoscopic particle-image velocimetry (stereo-PIV). Two fuels (ethanol and methyl ethyl ketone (MEK)), four injection pressures (50, 100, 150, and 200 bar), three starting points of injection (60°, 277°, and 297° atdc), and two engine speeds (1,500 rpm and 2,000 rpm) define the parameter space of the experiments. The MSI measurements determine the vertical penetration length and the spray cone angle of the ethanol and MEK spray. Stereo-PIV is used to investigate the interaction of the flow field and the ethanol spray after the injection process for a start of injection at 60° atdc. These measurements are compared to stereo-PIV measurements without fuel injection performed in the same engine [19].
Technical Paper

Experimental Investigation of Droplet Size and Velocity in Clustered Diesel Sprays under High-Pressure and High-Temperature Conditions

2010-10-25
2010-01-2240
An experimental study on the interaction of sprays from clustered orifices is presented. Droplet size and velocity information has been gained by means of Phase Doppler Anemometry for different nozzle configurations varying the diverging opening angle between clustered sprays from 0° to 15°. These nozzles were investigated under high-pressure (50 bar) and high-temperature (800 K) conditions in a pressure chamber and the results are compared to two standard nozzles with flow rates corresponding either to the flow rate of the cluster nozzle configuration or half of the flow rate of this configuration. Two injection pressures, 600 bar and 1100 bar, were used to investigate all nozzles. This investigation completes the characterization of sprays from the cluster nozzles presented in an earlier work. Findings obtained therein were used to choose the measurement procedure for the present investigation and also to determine the spray width in order to obtain the spray angle.
Technical Paper

Experimental Investigation of Fuel Influence on Atomization and Spray Propagation Using an Outwardly Opening GDI-Injector

2010-10-25
2010-01-2275
One fundamental subprocess for the utilization of alternative fuels for automotive applications is the in-cylinder mixture formation and therefore the fuel injection, which largely affects the combustion efficiency of internal combustion engines. This study analyzes the influence of the physical properties of various model-fuels on atomization and spray propagation at temperatures and pressures matching the operating conditions of today's gasoline engines. The experiments were carried out using an outwardly opening, piezo-driven gasoline injector. In order to cover a wide range of potential fuels the following liquids were investigated: Alcohols (Ethanol, Butanol and Decanol), alkanes (Iso-Octane, Dodecane and Heptane) and one furane (Tetrahydrofurfuryl Alcohol). The macroscopic spray propagation of the fuels was investigated using shadowgraphy. For complementary spray characterization droplet sizes and velocities were measured using Phase-Doppler Anemometry.
Technical Paper

Experimental Investigation of Ion Formation for Auto-Ignition Combustion in a High-Temperature and High-Pressure Combustion Vessel

2023-08-28
2023-24-0029
One of the main challenges in internal combustion engine design is the simultaneous reduction of all engine pollutants like carbon monoxide (CO), total unburned hydrocarbons (THC), nitrogen oxides (NOx), and soot. Low-temperature combustion (LTC) concepts for compression ignition (CI) engines, e.g., premixed charged compression ignition (PCCI), make use of pre-injections to create a partially homogenous mixture and achieve an emission reduction. However, they present challenges in the combustion control, with the usage of in-cylinder pressure sensors as feedback signal is insufficient to control heat release and pollutant emissions simultaneously. Thus, an additional sensor, such as an ion-current sensor, could provide further information on the combustion process and effectively enable clean and efficient PCCI operation.
X