Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

1D Engine Simulation Approach for Optimizing Engine and Exhaust Aftertreatment Thermal Management for Passenger Car Diesel Engines by Means of Variable Valve Train (VVT) Applications

2018-04-03
2018-01-0163
Using a holistic 1D engine simulation approach for the modelling of full-transient engine operation, allows analyzing future engine concepts, including its exhaust gas aftertreatment technology, early in the development process. Thus, this approach enables the investigation of both important fields - the thermodynamic engine process and the aftertreatment system, together with their interaction in a single simulation environment. Regarding the aftertreatment system, the kinetic reaction behavior of state-of-the-art and advanced components, such as Diesel Oxidation Catalysts (DOC) or Selective Catalytic Reduction Soot Filters (SCRF), is being modelled. Furthermore, the authors present the use of the 1D engine and exhaust gas aftertreatment model on use cases of variable valve train (VVT) applications on passenger car (PC) diesel engines.
Journal Article

A Sectoral Approach to Modelling Wall Heat Transfer in Exhaust Ports and Manifolds for Turbocharged Gasoline Engines

2016-04-05
2016-01-0202
A new approach is presented to modelling wall heat transfer in the exhaust port and manifold within 1D gas exchange simulation to ensure a precise calculation of thermal exhaust enthalpy. One of the principal characteristics of this approach is the partition of the exhaust process in a blow-down and a push-out phase. In addition to the split in two phases, the exhaust system is divided into several sections to consider changes in heat transfer characteristics downstream the exhaust valves. Principally, the convective heat transfer is described by the characteristic numbers of Nusselt, Reynolds and Prandtl. However, the phase individual correlation coefficients are derived from 3D CFD investigations of the flow in the exhaust system combined with Low-Re turbulence modelling. Furthermore, heat losses on the valve and the seat ring surfaces are considered by an empirical model approach.
Technical Paper

Comparing Large Eddy Simulation of a Reacting Fuel Spray with Measured Quantitative Flame Parameters

2018-09-10
2018-01-1720
In order to reduce engine out CO2 emissions, it is a main subject to find new alternative fuels from renewable sources. For identifying the specification of an optimized fuel for engine combustion, it is essential to understand the details of combustion and pollutant formation. For obtaining a better understanding of the flame behavior, dynamic structure large eddy simulations are a method of choice. In the investigation presented in this paper, an n-heptane spray flame is simulated under engine relevant conditions starting at a pressure of 50 bar and a temperature of 800 K. Measurements are conducted at a high-pressure vessel with the same conditions. Liquid penetration length is measured with Mie-Scatterlight, gaseous penetration length with Shadowgraphy and lift-off length as well as ignition delay with OH*-Radiation. In addition to these global high-speed measurement techniques, detailed spectroscopic laser measurements are conducted at the n-heptane flame.
Journal Article

Development and Demonstration of LNT+SCR System for Passenger Car Diesel Applications

2014-04-01
2014-01-1537
The regulations for mobile applications will become stricter in Euro 6 and further emission levels and require the use of active aftertreatment methods for NOX and particulate matter. SCR and LNT have been both used commercially for mobile NOX removal. An alternative system is based on the combination of these two technologies. Developments of catalysts and whole systems as well as final vehicle demonstrations are discussed in this study. The small and full-size catalyst development experiments resulted in PtRh/LNT with optimized noble metal loadings and Cu-SCR catalyst having a high durability and ammonia adsorption capacity. For this study, an aftertreatment system consisting of LNT plus exhaust bypass, passive SCR and engine independent reductant supply by on-board exhaust fuel reforming was developed and investigated. The concept definition considers NOX conversion, CO2 drawback and system complexity.
Technical Paper

Efficient Recuperation of Kinetic Energy - Hybrid Versus Hydrostatic Approach

2007-10-30
2007-01-4153
This paper analyzes different concepts for storage and recuperation of kinetic energy during braking operation in a forklift truck application. The reduction of fuel consumption is one of the challenges for on and off-road vehicles. Starting from a conventional hydrostatic transmission, secondary hydraulic control and a hybrid solution are investigated. Wasting kinetic energy during braking operation of mobile working machines in cyclic applications and converting it into heat energy instead of reusable energy is a very inefficient principle still used in industry. Rising energy costs, enhanced government guidelines and increased environmental awareness require more efficient drive concepts for the next decades. Recuperation of kinetic energy during braking operation provides the opportunity of increasing the efficiency of mobile working machines. Efficient recuperation of kinetic energy requires a proper application and a low-loss system design.
Technical Paper

Experimental Investigation of the Effect of Multiple Injections on Pollutant Formation in a Common-Rail DI Diesel Engine

2008-04-14
2008-01-1191
In Common-Rail DI Diesel Engines, multiple injection strategies are considered as one of the methodologies to achieve optimum performance and emission reduction. However, multiple injections open a whole new horizon of parameters which affect the combustion process. These parameters include the number of injection events, the duration between the starts of each injection event, the splitting of the total fuel mass on the different injection events, etc. In the present work, the influence of the number of injection events and the influence of the duration between the starts of each injection event on emission levels are investigated. Combustion and pollutant formation were experimentally investigated in a Common-Rail DI Diesel engine. The engine was operated at conventional part-load conditions with 2000 rpm, no external EGR, and an injected fuel mass of 15 mg/cycle.
Technical Paper

Generic Control Software Architecture for Battery Management Systems

2015-09-29
2015-01-2849
Electrification is a key enabler to reduce emissions levels and noise in commercial vehicles. With electrification, Batteries are being used in commercial hybrid vehicles like city buses and trucks for kinetic energy recovery, boosting and electric driving. A battery management system monitors and controls multiple components of a battery system like cells, relays, sensors, actuators and high voltage loads to optimize the performance of a battery system. This paper deals with the development of modular control architecture for battery management systems in commercial vehicles. The key technical challenges for software development in commercial vehicles are growing complexity, rising number of functional requirements, safety, variant diversity, software quality requirements and reduced development costs. Software architecture is critical to handle some of these challenges early in the development process.
Technical Paper

Hardware-in-the-Loop Testing of Electric Traction Drives with an Efficiency Optimized DC-DC Converter Control

2020-04-14
2020-01-0462
In order to reduce development cost and time, frontloading is an established methodology for automotive development programs. With this approach, particular development tasks are shifted to earlier program phases. One prerequisite for this approach is the application of Hardware-in-the-Loop test setups. Hardware-in-the-Loop methodologies have already successfully been applied to conventional as well as electrified powertrains considering various driving scenarios. Regarding driving performance and energy demand, electrified powertrains are highly dependent on the dc-link voltage. However, there is a particular shortage of studies focusing on the verification of variable dc-link voltage controls by Hardware-in-the-Loop setups. This article is intended to be a first step towards closing this gap. Thereto, a Hardware-in-the-Loop setup of a battery electric vehicle is developed.
Technical Paper

Lower Emissions in Commercial Diesel Engines through Waste Heat Recovery

2016-09-27
2016-01-8084
In order to comply with demanding Greenhous Gas (GHG) standards, future automotive engines employ advanced engine technologies including waste heat recovery (WHR) systems. A waste heat recovery system converts part of engine wasted exergies to useful work which can be fed back to the engine. Utilizing this additional output power leads to lower specific fuel consumption and CO2 emission when the total output power equals the original engine output power. Engine calibration strategies for reductions in specific fuel consumption typically results in a natural increase of NOx emissions. The utilization of waste heat recovery systems provides a pathway which gives both reduction in emissions and reduction in specific fuel consumption. According to DOE (Department of Energy), US heavy-duty truck engines’ technology need to be upgraded towards higher brake thermal efficiencies (BTE). DOE target is BTE>55% for Class-8 heavy-duty vehicles in the United States.
Technical Paper

Model-in-the-Loop Testing of SOC and SOH Estimation Algorithms in Battery Management Systems

2017-01-10
2017-26-0094
With the increasing application of the lithium ion battery technology in automotive industry, development processes and validation methods for the battery management system (BMS) have drawn more and more attentions. One fundamental function of the BMS is to continuously estimate the battery’s state-of-charge (SOC) and state-of-health (SOH) to guarantee a safe and efficient operation of the battery system. For SOC as well as SOH estimations of a BMS, there are certain non-ideal situations in a real vehicle environment such as measurement inaccuracies, variation of cell characteristics over time, etc. which will influence the outcome of battery state estimation in a negative way. Quantifying such influence factors demands extensive measurements. Therefore, we have developed a model-in-the-loop (MIL) environment which is able to simulate the operating conditions that a BMS will encounter in a vehicle.
Technical Paper

Modeling of Transport and Mixing Phenomena in Turbulent Flows in Closed Domains

2015-04-14
2015-01-0399
In this work, a transport and mixing model that calculates mixing in thermodynamic phase space was derived and validated. The mixing in thermodynamic multizone space is consistent to the one in the spatially resolved physical space. The model is developed using a turbulent channel flow as simplified domain. This physical domain of a direct numerical simulation (DNS) is divided into zones based on the quantitative value of transported scalars. Fluxes between the zones are introduced to describe mixing from the transport equation of the probability density function based on the mixing process in physical space. The mixing process of further scalars can then be carried out with these fluxes instead of solving additional transport equations. The relationship between the exchange flux in phase space and the concept of scalar dissipation are shown and validated by comparison to DNS results.
Technical Paper

Multi-Domain Modelling of 3 Phase Voltage Source Converters in Modelica Language

2016-09-20
2016-01-2029
This paper will present a multi-domain (electrical and thermal) model of a three phase voltage source converter and its implementation in Modelica language. An averaged model is utilised for the electrical domain, and a power balance method is used for linking the DC and AC sides. The thermal domain focuses in deriving the converter losses by deriving the analytical equations of the space vector modulation to derive a function for the duty cycle of each converter leg. With this, the conduction and switching losses are calculated for the individual switches and diodes, without having to model their actual switching behaviour. The model is very fast to simulate, as no switching events are needed, and allows obtaining the simulation of the electrical and thermal behaviour in the same simulation package..
Technical Paper

Optimised Neat Ethanol Engine with Stratified Combustion at Part-load; Particle Emissions, Efficiency and Performance

2013-04-08
2013-01-0254
A regular flex-fuel engine can operate on any blend of fuel between pure gasoline and E85. Flex-fuel engines have relatively low efficiency on E85 because the hardware is optimized for gasoline. If instead the engine is optimized for neat ethanol, the efficiency may be much higher, as demonstrated in this paper. The studied two-liter engine was modified with a much higher compression ratio than suitable for gasoline, two-stage turbocharging and direct injection with piezo-actuated outwards-opening injectors, a stratified combustion system and custom in-house control system. The research engine exhibited a wide-open throttle performance similar to that of a naturally aspirated v8, while offering a part-load efficiency comparable to a state-of-the-art two-liter naturally aspirated engine. NOx will be handled by a lean NOx trap. Combustion characteristics were compared between gasoline and neat ethanol.
Technical Paper

Real-time Multi-Layer Predictive Energy Management for a Plug-in Hybrid Vehicle based on Horizon and Navigation Data

2024-04-09
2024-01-2773
Plug-In Hybrid Vehicles (PHEV) have been of significant importance recently to comply with future CO2 and pollutant emissions limit. However, performance of these vehicles is closely related to the energy management strategy (EMS) used to ensure minimum fuel consumption and maximize electric driving range. While conventional EMS concepts are developed to operate in wide range of scenarios, this approach could potentially compromise the fuel consumption benefit due to the omission of route and traffic information. With the advancements in the availability of real-time traffic, navigation and driving route information, the EMS can be further optimized to extract the complete potential of a PHEV. In this context, this paper presents application of predictive energy management (PEM) functionalities combined with information such as live traffic data to reduce the fuel consumption for a P1/P3 configuration PHEV vehicle.
Technical Paper

Relevance of Exhaust Aftertreatment System Degradation for EU7 Gasoline Engine Applications

2020-04-14
2020-01-0382
Exhaust aftertreatment systems must function sufficiently over the full useful life of a vehicle. In Europe this is currently defined as 160.000 km. With the introduction of Euro 7 it is expected that the required mileage will be extended to 240.000 km. This will then be consistent with the US legislation. In order to quantify the emission impact of exhaust system degradation, an Euro 7 exhaust aftertreatment system is aged by different accelerated approaches: application of the Standard Bench Cycle, the ZDAKW cycle, a novel ash loading method and borderline aging. The results depict the impact of oil ash on the oxygen storage capacity. For tailpipe emissions, the maximum peak temperatures are the dominant aging factor. The cold start performance is effected by both, thermal degradation and ash accumulation. An evaluation of this emission increase requires appropriate benchmarks.
Technical Paper

Scenario-Based Development and Meta-Level Design for Automotive Systems: An Explanatory Study

2024-04-09
2024-01-2501
Prevailing automotive development focus shifts towards passenger-centric development of vehicle systems. Comparative to autonomous driving development, the challenge evolves to describe all relevant driving situations with the necessary information and context to be able to develop and optimize vehicle systems to actual driving situations. The situational description or scenario, i.e., context or ambiance in which a vehicle is located, represents a fundamental factor in consideration of system behavior and respective system optimization opportunities. The challenge to solve the respective automotive engineering problems for nonlinear multidimensional parameter spaces or mixed integer classification problems is to describe and limit the possible solution space by suitable methodologies. Conventional methods prove inadequate solution as they can only be applied with significant financial resources and engineering time efforts, as known by autonomous driving system development.
Journal Article

Tomographic Particle-Image Velocimetry Analysis of In-Cylinder Flows

2015-06-01
2015-01-9042
New combustion processes require an understanding of the highly three-dimensional flow field to effectively decrease fuel consumption and pollutant emission. Due to the complex spatial character of the flow the knowledge of the development of the flow in an extended volume is necessary. Previous investigations were able to visualize the discrete three-dimensional flow field through multi-plane stereoscopic PIV. In this study, cycle resolved tomographic particle-image velocimetry measurement have been performed to obtain a fully resolved representation of the three-dimensional flow structures at each instant. The analysis is based on the measurements at 80°, 160°, and 240° after top dead center(atdc) such that the velocity distributions at the intake, the end of the intake, and the compression stroke at an engine speed of 1,500 rpm are discussed in detail.
Journal Article

Virtual 48 V Mild Hybridization: Efficient Validation by Engine-in-the-Loop

2018-04-03
2018-01-0410
New 12 V/48 V power net architectures are potential solutions to close the gap between customer needs and legislative requirements. In order to exploit their potential, an increased effort is needed for functional implementation and hardware integration. Shifting of development tasks to earlier phases (frontloading) is a promising solution to streamline the development process and to increase the maturity level at early stages. This study shows the potential of the frontloading of development tasks by implementing a virtual 48 V mild hybridization in an engine-in-the-loop (EiL) setup. Advanced simulation technics like functional mock-up interface- (FMI) based co-simulation are utilized for the seamless integration of the real-time (RT) simulation models and allow a modular simulation framework as well as a decrease in development time.
Technical Paper

“Build Your Hybrid” - A Novel Approach to Test Various Hybrid Powertrain Concepts

2023-04-11
2023-01-0546
Powertrain electrification is becoming increasingly common in the transportation sector to address the challenges of global warming and deteriorating air quality. This paper introduces a novel “Build Your Hybrid” approach to experience and test various hybrid powertrain concepts. This approach is applied to the light commercial vehicles (LCV) segment due to the attractive combination of a Diesel engine and a partly electrified powertrain. For this purpose, a demonstrator vehicle has been set up with a flexible P02 hybrid topology and a prototype Hybrid Control Unit (HCU). Based on user input, the HCU software modifies the control functions and simulation models to emulate different sub-topologies and levels of hybridization in the demonstrator vehicle. Three powertrain concepts are considered for LCVs: HV P2, 48V P2 and 48V P0 hybrid. Dedicated hybrid control strategies are developed to take full advantage of the synergies of the electrical system and reduce CO2 and NOx emissions.
X