Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Catalytic Converter Design Incorporating Dynamic Can Deformation

2002-05-06
2002-01-1751
A stochastic simulation based on the Monte-Carlo method was developed to re-target gap bulk density (GBD) in ceramic catalytic converters. The combined effect of manufacturing tolerances, shell spring back and thermal expansion was analyzed by this model. Shell spring back during the canning process was calculated using Finite Element Analysis (FEA). Thermal shell expansion was obtained using can deformation data from the Key-Life Test (KLT). An example of optimized GBD that provides a robust and manufacturable design is also presented.
Technical Paper

Catalytic Converter Design for Manufacturing Using Monte-Carlo Simulation

2000-10-16
2000-01-2878
A stochastic simulation based on the Monte-Carlo method was developed to study the effect of substrate, mounting mat and converter shell dimensional tolerances on the converter manufacturing process. Results for a stuffed converter with nominal gap bulk density (GBD) 1.00 g/cm3 show an asymmetric probability density function ranging from 0.90 to 1.13 g/cm3. Destructive and non-destructive GBD measurements on oval and round production converters show close correlation with the Monte-Carlo model. Several manufacturing options offering tighter GBD control based on component sorting and matching are described. Improvements ranging from 28% and 64% in GBD control are possible.
Technical Paper

Single Seam Stuffed Converter Design for Thinwall Substrates

1999-10-25
1999-01-3628
Single seam stuffed converters are often used to house ceramic substrates due to the simplicity and low tooling cost of the canning process. However, stuffing thinwall substrates requires careful GBD (gap bulk density) control because of their low isostatic strengths. Statistical simulation results indicate that the stuffing process can be performed within the required GBD range of 0.8 to 1.2 g/cm3 using vermiculite mats with the current tolerance specifications. A nominal value of 0.925 g/cm3 is recommended to minimize substrate breakage. Experimental results show that prototypes can be built with a GBD accuracy of 0.05 g/cm3. This paper describes the requirements needed to design and validate single seam stuffed converters.
X