Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Comparison of Gas Chromatography-Based Methods of Analyzing Hydrocarbon Species

1994-03-01
940740
Gas chromatographic methods for analyzing hydrocarbon species in vehicle exhaust emissions were compared in terms of their collection efficiency, detection limit, repeatability and number of species detected using cylinder gas and tailpipe emission samples. The main methods compared were a Tenax cold trap injection (TCT) method (C5-C12 HCs) and a cold trap injection (CTI) method (C2-C4 HCs; C5-C12 HCs). Our own direct (DIR) method was used to confirm the collection efficiencies. Both methods yielded good results, but the CTI method showed low collection efficiency for some C2-C4 HCs. Measurement of individual species is needed with this method for accurate analysis of tailpipe emissions. Both the CTI method and the TCT method combined with the DIR method for determining C2-C4 HCs yielded nearly the same ozone specific reactivity values for the NMHC species analyzed.
Journal Article

A Comparison of the NHTSA Research Offset Oblique and Small Overlap Impact Tests and the IIHS Moderate and Small Overlap Tests

2014-04-01
2014-01-0537
The National Highway Traffic Safety Administration (NHTSA) and the Insurance Institute for Highway Safety (IIHS) have both developed crash test methodologies to address frontal collisions in which the vehicle's primary front structure is either partially engaged or not engaged at all. IIHS addresses Small Overlap crashes, cases in which the vehicle's primary front energy absorbing structure is not engaged, using a rigid static barrier with an overlap of 25% of the vehicle's width at an impact angle of 0°. The Institute's Moderate Overlap partially engages the vehicle's primary front energy absorbing structure using a deformable static barrier with 40% overlap at a 0° impact angle. The NHTSA has developed two research test methods which use a common moving deformable barrier impacting the vehicle with 20% overlap at a 7° impact angle and 35% overlap at a 15° impact angle respectively.
Technical Paper

A Computerized Optimization Method Of Engine Mounting System

2003-05-05
2003-01-1461
This paper presents a method for optimization design of an engine mounting system subjected to some constraints. The engine center of gravity, the mount stiffness rates, the mount locations and/or their orientations with respect to the vehicle can be chosen as design variables, but some of them are given in advance or have limitations because of the packaging constraints on the mount locations, as well as the individual mount rate ratio limitations imposed by manufacturability. A computer program, called DynaMount, has been developed that identifies the optimum design variables for the engine mounting system, including decoupling mode, natural frequency placement, etc.. The degree of decoupling achieved is quantified by kinetic energy distributions calculated for each of the modes. Several application examples are presented to illustrate the validity of this method and the computer program.
Technical Paper

A Dynamic Test Procedure for Evaluation of Tripped Rollover Crashes

2002-03-04
2002-01-0693
Rollover crashes have continued to be a source of extensive research into determining both vehicle performance, and occupant restraint capabilities. Prior research has utilized various test procedures, including the FMVSS 208 dolly fixture, as a basis for evaluating vehicle and restraint performance. This research, using 2001 Nissan Pathfinder sport utility vehicles (SUVs), was conducted to update the status of passenger vehicle rollover testing, and evaluate dynamic test repeatability with a new test procedure. A series of eight rollover tests was conducted using these SUV vehicles, mounted on a modified FMVSS 208 rollover dolly fixture, with instrumented dummies in both front seat positions. This test protocol involved launching the vehicles horizontally, after snubbing the dolly fixture, and having the leading-side tires contact curbing for a trip mechanism.
Technical Paper

A Fully Variable Mechanical Valvetrain with a Simple Moving Pivot

2005-04-11
2005-01-0770
A continuously variable lift, duration and phase mechanical lift mechanism is described, as applied to the intake valvetrain of a SOHC, 4-valve per cylinder, four-cylinder production engine. Improvements in fuel economy were sought by reduction of pumping losses and improved charge preparation, and optimization of WOT torque was attempted by variation of intake valve closing angle. Adjustment of the mechanism is achieved by movement of the pivot shaft for the rocker arms. The relationship between lift, duration and phase is predetermined at the design stage, and is fixed during operation. There is considerable design flexibility to achieve the envelope of lift curves deemed desirable. The operation of the mechanism is described, as are the development procedure, testing with fixed cams, some cycle simulation, friction testing on a separate rig and dyno testing results for idle, part load and WOT.
Technical Paper

A Fundamental Study on External Engine Noise Propagation from Light Vehicles

1978-02-01
780173
In this paper, we have analyzed the problem of the engine noise propagation and have classified that there is a fundamental relationship between exterior noise and structural design. In the case of light vehicles, we have isolated the following 2 factors in structural design which have a direct bearing on exterior noise. (1) The layout and the area of exposed openings in the engine room. (2) The ability of the engine room to absorb noise. In conclusion we suggest comprehensive approach to the problem of automotive noise reduction.
Technical Paper

A Hybrid Method for Vehicle Axle Noise Simulation with Experimental Validation

2003-05-05
2003-01-1707
Recently, many authors have attempted to represent an automobile body in terms of experimentally derived frequency response functions (FRFs), and to couple the FRFs with a FEA model of chassis for performing a total system dynamic analysis. This method is called Hybrid FEA-Experimental FRF method, or briefly HYFEX. However, in cases where the chassis model does not include the bushing models, one can not directly connect the FRFs of the auto body to the chassis model for performing a total system dynamic analysis. In other cases when the chassis model includes the bushings, the bushing dynamic rates are modeled as constant stiffness rather than frequency dependent stiffness, the direct use of the HYFEX method will yield unsatisfactory results. This paper describes how the FRF's of the auto body and the frequency dependent stiffness data of the bushings can be combined with an appropriate mathematical formulation to better represent the dynamic characteristics of a full vehicle.
Technical Paper

A Lubrication Analysis of Multi Link VCR Engine Components using a Mixed Elasto-Hydrodynamic Lubrication Theory Model

2009-04-20
2009-01-1062
Research is under way on an engine system [1] that achieves a variable compression ratio using a multiple-link mechanism between the crankshaft and pistons for the dual purpose of improving fuel economy and power output. At present, there is no database that allows direct judgment of the feasibility of the specific sliding parts in this mechanism. In this paper, the feasibility was examined by making a comparison with the sliding characteristics and material properties of conventional engine parts, for which databases exist, and using evaluation parameters based on mixed elasto-hydrodynamic (EHD) lubrication calculations. In addition, the innovations made to the mixed EHD calculation method used in this study to facilitate calculations under various lubrication conditions are also explained, including the treatment of surface roughness, wear progress and stiffness around the bearings.
Technical Paper

A Method for Predicting Connecting Rod Bearings Reliability Based on Seizure and Wear Analysis

1988-02-01
880568
Maintaining reliability of the connecting rod bearing is a very important subject, and the following is a problem that needs to be overcome. Predicting reliability has generally depended on minimum oil film thickness (M.O.F.T), but recently, the engines of passenger cars which have greater power and speed potential than conventional ones are sometimes run beyond their M.O.F.T. limit (a degree of roughness around the crank shaft's axis.) In such a case, it is so difficult to predict reliability according to M.O.F.T., that we need a new index which directly shows seizure and wear. For this purpose, we found that the crank shaft pin temperature can be a key cause of seizure and wear according to an analysis of the relationship between its temperature and the seizure and wear caused intentionally. Using this method, we confirmed that the combination of bearing and crank shaft materials is very important for preventing seizure and wear.
Technical Paper

A Model for On-Line Monitoring of In-Cylinder Residual Gas Fraction (RGF) and Mass Flowrate in Gasoline Engines

2006-04-03
2006-01-0656
In a gasoline engine, the unswept in-cylinder residual gas and introduction of external EGR is one of the important means of controlling engine raw NOx emissions and improving part load fuel economy via reduction of pumping losses. Since the trapped in-cylinder Residual Gas Fraction (RGF, comprised of both internal, and external) significantly affects the combustion process, on-line diagnosis and monitoring of in-cylinder RGF is very important to the understanding of the in-cylinder dilution condition. This is critical during the combustion system development testing and calibration processes. However, on-line measurement of in-cylinder RGF is difficult and requires an expensive exhaust gas analyzer, making it impractical for every application. Other existing methods, based on measured intake and exhaust pressures (steady state or dynamic traces) to calculate gas mass flowrate across the cylinder ports, provide a fast and economical solution to this problem.
Technical Paper

A Multiple Order Conformability Model for Uniform Cross-Section Piston Rings

2005-04-11
2005-01-1643
This paper examines the conformability of elastic piston rings to a distorted cylinder bore. Several bounds are available in the literature to help estimate the maximum allowable Fourier coefficient in a Fourier expansion of bore distortion: the analytically derived bounds in [7] and [8], and the semi-empirically derived bounds discussed in [9]. The underlying assumptions for each set of analytic bounds are examined and a multiple order algorithm is derived. The proposed algorithm takes account of multiple orders of distortion at once. It is tested with finite element (FE) data and compared to the classical bound approach. The results indicate that the bounds in [7] are compatible with linear elasticity theory (LET), whereas the bounds in [8] are not. Furthermore, numerical evidence indicates that the present multiple order algorithm can predict seal breaches more accurately than either of the other analytic bounds.
Technical Paper

A New 1.6-Liter Twin-Cam 16-Valve Nissan Engine

1991-02-01
910677
Nissan has developed a new GA16DE engine for use in the new 1991 Sentra. The major development aims for this engine were to achieve ample torque at low to intermediate engine speed and smooth throttle response. These aims, of course, had to be compatible with good fuel economy, quietness, maintenance-free operation and high reliability. In addition, It was necessary to achieve a compact package size despite the twin-cam design. All of those objectives have been attained through the use of a super-long and aerodynamic intake system, variable valve timing control, a low friction, maintenance-free, direct acting valve system, dual direction fuel injectors, and a two-stage cam drive system. This paper discuss the major development objectives, basic engine structure and principal component parts.
Journal Article

A New Method of Characterizing Wind Noise Sources and Body Response for a Detailed Analysis of the Noise Transmission Mechanism

2016-04-05
2016-01-1304
Interior noise caused by exterior air flow, or wind noise, is one of the noise-and-vibration phenomena for which a systematic simulation method has been desired for enabling their prediction. One of the main difficulties in simulating wind noise is that, unlike most other noises from the engine or road input, wind noise has not one but two different types of sources, namely, convective and acoustic ones. Therefore, in order to synthesize the interior sound pressure level (SPL), the body sensitivities (interior SPL/outer source level) for both types of sources have to be considered. In particular, sensitivity to the convective input has not been well understood, and hence it has not been determined. Moreover, the high-frequency nature of wind noise (e.g., the main energy range extends up to 4000 Hz) has limited the effective application of CAE for determining body sensitivities, for example, from the side window glass to the occupants’ ears.
Technical Paper

A New Nissan 3.0-liter V-6 Twin-cam Twin-turbo Engine with Dual Intake and Exhaust Systems

1990-02-01
900649
As a new generation sports car engine to lead the field in the 1990s, a 3.0 liter, 60°V, type 6 cylinder, 4 cam, 24 valve engine (VG30DETT) has been developed to achieve the utmost in high performance levels and reliability. it has been mounted on the new model 300ZX and announced in the North America and Japanese markets. The VG30DETT engine is based on the previous VG30DE engine (the engine mounted on the former model 300ZX designed for the market in Japan). The main components, the major driving and the lubrication systems including such parts as the crank shaft,con-rod, cylinder block, piston, exhaust manifold, and oil pan of the VG30DE were thoroughly reviewed and revised. The VG30DETT engine is the result of redesigning the structure of the engine itself and its parts and components to assure durability under, high-level performance requirements.
Technical Paper

A New Way of Electrical/Electronic Systems Endurance Testing of Vehicles in a Real World Environment Prior to Production Launch

2001-03-05
2001-01-1101
With the increasing emphasis on Systems Engineering, there is a need to ensure that Electrical/Electronic (E/E) Systems Endurance Testing of vehicles, in a real world environment, prior to Production Launch, is performed in a manner and at a technological level that is commensurate with the high level of electronics and computers in contemporary vehicles. Additionally, validating the design and performance of individual standalone electronic systems and modules “on the bench” does not guarantee that all the permutations and combinations of real-world hardware, software, and driving conditions are taken into account. Traditional Proving Ground (PG) vehicle testing focuses mainly on powertrain durability testing, with only a simple checklist being used by the PG drivers as a reminder to cycle some of the electrical components such as the power window switches, turn signals, etc.
Technical Paper

A Numerical Study to Control Combustion Duration of Hydrogen-Fueled HCCI by Using Multi-Zone Chemical Kinetics Simulation

2001-03-05
2001-01-0250
An engine cycle simulation code with detailed chemical kinetics has been developed to study Homogeneous Charge Compression Ignition (HCCI) combustion with hydrogen as the fuel. In order to attain adequate combustion duration, resulting from the self-accelerating nature of the chemical reaction, fuel and temperature inhomogeneities have been brought to the calculation by considering the combustion chamber to have various temperature and fuel distributions. Calculations have been done under various conditions including both perfectly homogeneous and inhomogeneous cases, changing the degree of inhomogeneity. The results show that intake gas temperature is more dominant on ignition timing of HCCI than equivalence ratio and that there is a possibility to control HCCI by introducing appropriate temperature inhomogeneity to in-cylinder mixture.
Journal Article

A Study of Combustion Technology for a High Compression Ratio Engine: The Influence of Combustion Chamber Wall Temperature on Knocking

2016-04-05
2016-01-0703
Technologies for improving the fuel economy of gasoline engines have been vigorously developed in recent years for the purpose of reducing CO2 emissions. Increasing the compression ratio is an example of a technology for improving the thermal efficiency of gasoline engines. A significant issue of a high compression ratio engine for improving fuel economy and low-end torque is prevention of knocking under a low engine speed. Knocking is caused by autoignition of the air-fuel mixture in the cylinder and seems to be largely affected by heat transfer from the intake port and combustion chamber walls. In this study, the influence of heat transfer from the walls of each part was analyzed by the following three approaches using computational fluid dynamics (CFD) and experiments conducted with a multi-cooling engine system. First, the temperature rise of the air-fuel mixture by heat transfer from each part was analyzed.
Technical Paper

A Study of Drag Reduction Devices for Production Pick-up Trucks

2017-03-28
2017-01-1531
This paper describes a study of drag reduction devices for production pick-up trucks with a body-on-frame structure using full-scale wind tunnel testing and Computational Fluid Dynamics (CFD) simulations. First, the flow structure around a pick-up truck was investigated and studied, focusing in particular on the flow structure between the cabin and tailgate. It was found that the flow structure around the tailgate was closely related to aerodynamic drag. A low drag flow structure was found by flow analysis, and the separation angle at the roof end was identified as being important to achieve the flow structure. While proceeding with the development of a new production model, a technical issue of the flow structure involving sensitivity to the vehicle velocity was identified in connection with optimization of the roof end shape. (1)A tailgate spoiler was examined for solving this issue.
Technical Paper

A Study of Friction Characteristics of Continuously Variable Valve Event & Lift (VEL) System

2006-04-03
2006-01-0222
A continuously variable valve event and lift (VEL) system, actuated by oscillating cams, can provide optimum lift and event angles matching the engine operating conditions, thereby improving fuel economy, exhaust emission performance and power output. The VEL system allows small lift and event angles even in the engine operating region where the required intake air volume is small and the influence of valvetrain friction is substantial, such as during idling. Therefore, the system can reduce friction to lower levels than conventional valvetrains, which works to improve fuel economy. On the other hand, a distinct feature of oscillating cams is that their sliding velocity is zero at the time of peak lift, which differs from the behavior of conventional rotating cams. For that reason, it is assumed that the friction and lubrication characteristics of oscillating cams may differ from those of conventional cams.
Technical Paper

A Study of Heat Rejection and Combustion Characteristics of a Low-temperature and Pre-mixed Combustion Concept Based on Measurement of Instantaneous Heat Flux in a Direct-Injection Diesel Engine

2000-10-16
2000-01-2792
There have been strong demands recently for reductions in the fuel consumption and exhaust emissions of diesel engines from the standpoints of conserving energy and curbing global warming. A great deal of research is being done on new emission control technologies using direct-injection (DI) diesel engines that provide high thermal efficiency. This work includes dramatic improvements in the combustion process. The authors have developed a new combustion concept called Modulated Kinetics (MK), which reduces smoke and NOx levels simultaneously by reconciling low-temperature combustion with pre-mixed combustion [1, 2]. At present, research is under way on the second generation of MK combustion with the aim of improving emission performance further and achieving higher thermal efficiency [3]. Reducing heat rejection in the combustion chamber is effective in improving the thermal efficiency of DI diesel engines as well as that of MK combustion.
X