Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A CAE Based Stochastic Assessment and Improvement of Vehicle NCAP Response

2004-03-08
2004-01-0458
One of the primary issues in the interpretation of vehicle impact response data, observed from vehicle crash test events, is coping with variability. This vehicle response inconsistency generally causes test results to be unpredictable and makes CAE test validation work difficult as well. This paper, considering the uncertain characteristics of vehicle impact events, has implemented a stochastic assessment of vehicle NCAP response variation through a CAE vehicle impact model, and it has accomplished the three primary study objectives as stated follows: 1) Identify the response variation causing factors stochastically from various structural and environmental factor candidates and quantify the degree of their influences on crash response, 2) Develop a methodology for interpreting the significance of the factor effects in conjunction with vehicle impact mechanics and physics, and 3) Implement a stochastic improvement of the vehicle NCAP responses and their repeatability
Journal Article

A Comparison of the NHTSA Research Offset Oblique and Small Overlap Impact Tests and the IIHS Moderate and Small Overlap Tests

2014-04-01
2014-01-0537
The National Highway Traffic Safety Administration (NHTSA) and the Insurance Institute for Highway Safety (IIHS) have both developed crash test methodologies to address frontal collisions in which the vehicle's primary front structure is either partially engaged or not engaged at all. IIHS addresses Small Overlap crashes, cases in which the vehicle's primary front energy absorbing structure is not engaged, using a rigid static barrier with an overlap of 25% of the vehicle's width at an impact angle of 0°. The Institute's Moderate Overlap partially engages the vehicle's primary front energy absorbing structure using a deformable static barrier with 40% overlap at a 0° impact angle. The NHTSA has developed two research test methods which use a common moving deformable barrier impacting the vehicle with 20% overlap at a 7° impact angle and 35% overlap at a 15° impact angle respectively.
Technical Paper

A Computerized Optimization Method Of Engine Mounting System

2003-05-05
2003-01-1461
This paper presents a method for optimization design of an engine mounting system subjected to some constraints. The engine center of gravity, the mount stiffness rates, the mount locations and/or their orientations with respect to the vehicle can be chosen as design variables, but some of them are given in advance or have limitations because of the packaging constraints on the mount locations, as well as the individual mount rate ratio limitations imposed by manufacturability. A computer program, called DynaMount, has been developed that identifies the optimum design variables for the engine mounting system, including decoupling mode, natural frequency placement, etc.. The degree of decoupling achieved is quantified by kinetic energy distributions calculated for each of the modes. Several application examples are presented to illustrate the validity of this method and the computer program.
Technical Paper

A Dynamic Test Procedure for Evaluation of Tripped Rollover Crashes

2002-03-04
2002-01-0693
Rollover crashes have continued to be a source of extensive research into determining both vehicle performance, and occupant restraint capabilities. Prior research has utilized various test procedures, including the FMVSS 208 dolly fixture, as a basis for evaluating vehicle and restraint performance. This research, using 2001 Nissan Pathfinder sport utility vehicles (SUVs), was conducted to update the status of passenger vehicle rollover testing, and evaluate dynamic test repeatability with a new test procedure. A series of eight rollover tests was conducted using these SUV vehicles, mounted on a modified FMVSS 208 rollover dolly fixture, with instrumented dummies in both front seat positions. This test protocol involved launching the vehicles horizontally, after snubbing the dolly fixture, and having the leading-side tires contact curbing for a trip mechanism.
Technical Paper

A Method for Improving the Accuracy of Standard Stereo Photogrammetry When Using Small Subtended Angles

2005-04-11
2005-01-0751
In stereo photogrammetry, the accuracy of calculating the location of a point in space, decreases as the angle between the two cameras decreases. For vehicle crash testing, the need for accurate 3D data conflicts with the need for flexible positioning of the cameras, to enable unobstructed views of the targets inside the vehicle throughout the impact event. This paper discusses a method for increasing the quantity and quality of film analysis data when small subtended angles are used. The method uses the 3D information developed through triangulation of two cameras as input to a single camera analysis.
Technical Paper

A New Method for Obtaining FRF of a Structure in Area Where Impact Hammer Cannot Reach

2007-05-15
2007-01-2385
The Frequency Response Function (FRF) is a fundamental component to identifying the dynamic characteristics of a system. FRF's have a significant impact on modal analysis and root cause analysis of NVH issues. In most cases the FRF can be easily measured, but there are instances when the measurement is unobtainable due to spatial constraints. This paper outlines a simple experimental method for obtaining a high quality input-output FRF of a structure in areas where an impact hammer can not reach during impact testing. Traditionally, the FRF in such an area is obtained by using a load cell extender with a hammer impact excitation. A common problem with this device is a double hit, that yields unacceptable results.
Technical Paper

A New System for Independently Controlling Braking Force Between Inner and Outer Rear Wheels

1989-02-01
890835
This paper presents a new system for controlling the braking force between the inner and outer wheels in a turn independently. Vehicle cornering performance has improved noticeably in recent years thanks to advances achieved in tire and suspension technology. Due to this improvement, vehicle handling characteristics during braking have taken on added importance. To achieve stabler handling properties during braking in a turn, a new evaluation method is being used at Nissan to analyze vehicle directional stability. The analytical results show that decreasing the yaw moment before wheel locking occurs is effective in achieving stabler handling. An effective approach to decreasing the yaw moment is to control the braking force between the inner and outer wheels independently. Base on these analytical results and experimental data obtained with actual vehicles, a new system has been developed that provides such independent control over the braking force.
Technical Paper

A New Way of Electrical/Electronic Systems Endurance Testing of Vehicles in a Real World Environment Prior to Production Launch

2001-03-05
2001-01-1101
With the increasing emphasis on Systems Engineering, there is a need to ensure that Electrical/Electronic (E/E) Systems Endurance Testing of vehicles, in a real world environment, prior to Production Launch, is performed in a manner and at a technological level that is commensurate with the high level of electronics and computers in contemporary vehicles. Additionally, validating the design and performance of individual standalone electronic systems and modules “on the bench” does not guarantee that all the permutations and combinations of real-world hardware, software, and driving conditions are taken into account. Traditional Proving Ground (PG) vehicle testing focuses mainly on powertrain durability testing, with only a simple checklist being used by the PG drivers as a reminder to cycle some of the electrical components such as the power window switches, turn signals, etc.
Technical Paper

A Study of Drag Reduction Devices for Production Pick-up Trucks

2017-03-28
2017-01-1531
This paper describes a study of drag reduction devices for production pick-up trucks with a body-on-frame structure using full-scale wind tunnel testing and Computational Fluid Dynamics (CFD) simulations. First, the flow structure around a pick-up truck was investigated and studied, focusing in particular on the flow structure between the cabin and tailgate. It was found that the flow structure around the tailgate was closely related to aerodynamic drag. A low drag flow structure was found by flow analysis, and the separation angle at the roof end was identified as being important to achieve the flow structure. While proceeding with the development of a new production model, a technical issue of the flow structure involving sensitivity to the vehicle velocity was identified in connection with optimization of the roof end shape. (1)A tailgate spoiler was examined for solving this issue.
Technical Paper

A Study of Laser Radar

1985-01-01
856036
Various radar systems have been proposed as collision avoidance sensors for automatic braking and warning applications. Practical use of laser radar systems is near with the introduction of high power, high reliability laser diodes. Utilizing these new devices, a laser radar system has been adapted for measuring the distance to objects in its path. It was first shown that reflectors on the rear of the automobile possess high reflectivity and sharp directivity. Given these characteristics, a compact laser radar system was tested that employed 12W laser diodes and PIN photodiodes. The maximum range of approximately 100 m was obtained. Furthermore, the ability to discriminate other vehicles from roadside objects was achieved by detecting discontinuity in measured distance data through a microprocessor. These results show that the performance of laser radar is comparable to that of microwave radar.
Technical Paper

A Study of String-Stable ACC Using Vehicle-to-Vehicle Communication

2006-04-03
2006-01-0348
A study was made on a control method for an adaptive cruise control (ACC) system that uses vehicle-to-vehicle communication to achieve a substantial improvement in string stability and natural headway distance response characteristics at lower levels of longitudinal G. A control system using model predictive control was constructed to achieve this desired ACC vehicle behavior. Control simulations were performed using experimental data obtained in vehicle-following driving tests conducted on a proving ground course using a platoon of three manually driven vehicles. The results showed that the proposed ACC system satisfactorily achieved higher levels of required ACC performance.
Technical Paper

A Study of a Method for Predicting the Risk of Crossing-Collisions at Intersection

2008-04-14
2008-01-0524
The probability or risk of traffic accidents must be estimated quantitatively in order to implement effective traffic safety measures. In this study, various statistical data and probability theory were used to examine a method for predicting the risk of crossing-collisions, representing a typical type of accident at intersections in Japan. Crossing-collisions are caused by a variety of factors, including the road geometry and traffic environment at intersections and the awareness and intentions of the drivers of the striking and struck vehicles. Bayes' theorem was applied to find the accident probability of each factor separately. Specifically, the probability of various factors being present at the time of a crossing-collision was estimated on the basis of traffic accident data and observation survey data.
Technical Paper

A Study on the Torque Capacity of a Metal Pushing V-Belt for CVTs

1998-02-23
980822
The mechanism causing the micro slip characteristic of a metal CVT belt during torque transmission was analyzed, focusing on the gap distribution between the elements. It was hypothesized that gaps between the elements cause slip to occur between the elements and the pulleys when the belt is squeezed between the two halves of the pulleys, and the slip ratio was calculated theoretically on that assumption. The μ-v (friction coefficient versus sliding velocity) characteristic between the elements and the pulleys was measured and the results were used in calculating the slip ratio. As a result, a simulation procedure was developed for predicting the slip-limit torque of the belt on the basis of calculations. The slip ratio found by simulation and the calculated slip-limit torque showed good quantitative agreement with the experimental data, thereby confirming the validity of the simulation procedure.
Journal Article

Aerodynamic Sensitivity Analysis of Wheel Shape Factors

2019-04-02
2019-01-0667
Wheels play an important role in determining the aerodynamic drag of passenger vehicles. This is because the contribution of wheels to aerodynamic drag comes from not only the wheels themselves, but also from the interference effect between wheel wakes and the base wake. As far as the authors are aware, there have been no reports about aerodynamic drag sensitivity to wheel shape factors for different vehicle types and different exterior body shapes. The purpose of this study was to clarify CD sensitivity to wheel shape factors for a sedan and an SUV, including different rear fender shapes. Many different wheel configurations were investigated in terms of the CD, base pressure and flow fields in wind tunnel tests. Multiple regression analyses were conducted to clarify CD sensitivity to each wheel shape factor based on the test data. This study revealed high CD sensitivity factors for both the sedan and SUV.
Technical Paper

Aerodynamics Development for a New EV Hatchback Considering Crosswind Sensitivity

2018-04-03
2018-01-0715
An electric vehicle (EV) has less powertrain energy loss than an internal combustion engine vehicle (ICE), so its aerodynamic accounts have a larger portion of drag contribution of the total energy loss. This means that EV aerodynamic performance has a larger impact on the all-electric range (AER). Therefore, the target set for the aerodynamics development for a new EV hatchback was to improving AER for the customer’s benefit. To achieve lower aerodynamic drag than the previous model’s good aerodynamic performance, an ideal airflow wake structure was initially defined for the new EV hatchback that has a flat underbody with no exhaust system. Several important parameters were specified and proper numerical values for the ideal airflow were defined for them. As a result, the new EV hatchback achieves a 4% reduction in drag coefficient (CD) from the previous model.
Technical Paper

Air Bag Loading on In-Position Hybrid III Dummy Neck

2001-03-05
2001-01-0179
The Hybrid III family of dummies is used to estimate the response of an occupant during a crash. One recent area of interest is the response of the neck during air bag loading. The biomechanical response of the Hybrid III dummy's neck was based on inertial loading during crash events, when the dummy is restrained by a seat belt and/or seat back. Contact loading resulting from an air bag was not considered when the Hybrid III dummy was designed. This paper considers the effect of air bag loading on the 5th percentile female Hybrid III dummies. The response of the neck is presented in comparison to currently accepted biomechanical corridors. The Hybrid III dummy neck was designed with primary emphasis on appropriate flexion and extension responses using the corridors proposed by Mertz and Patrick. They formulated the mechanical performance requirements of the neck as the relationship between the moment at the occipital condyles and the rotation of the head relative to the torso.
Technical Paper

Airflow Measurement Around Passenger Car Models Using a Two-Channel Laser Doppler Velocimeter

1993-03-01
930297
A two-channel LDV system is used to obtain accurate airflow measurements around scale models of passenger cars in wind tunnel tests at the Nissan Research Center. A 2-watt argon-ion laser is employed as the light source. The main optical unit and probe head are connected by optical fibers. The probe head consists of a compact LDV probe with a beam expander and focusing lens with a long focal length can be easily traversed. A new type of signal processor, performing a digital autocorrelation function, is employed to process the Doppler signals. Mean airflow velocities and turbulence intensities are calculated by a micro computer to evaluate the flow fields. The results of preliminary experiments conducted with this system indicate that the system is not only capable of measuring the mean velocity components, including reverse flow, it can also provide accurate estimation of turbulence components.
Technical Paper

An Application of CAP (Computer-Aided Principle) to Structural Design for Vehicle Crash Safety

2007-04-16
2007-01-0882
The Computer-Aided Principle (CAP) is applied in this study as an effective approach to the crashworthiness design of the vehicle front-end structure. With this method, correlative parameters are extracted in a parametric study by using a cluster analysis. The results can help engineers to understand the fundamental mechanisms of structural phenomena. A simulation example of an offset frontal crash against a deformable barrier (ODB) is presented to show the effectiveness of the proposed method.
Technical Paper

An Efficient Procedure for Vehicle Thermal Protection Development

2005-04-11
2005-01-1904
Vehicle thermal protection is an important aspect of the overall vehicle development process. It involves optimizing the exhaust system routing and designing heat shields to protect various components that are in near proximity to the exhaust system. Reduced time to market necessitates an efficient process for thermal protection development. A robust procedure that utilizes state of the art CFD simulation techniques proactively during the design phase is described. Simulation allows for early detection of thermal issues and development of countermeasures several months before prototype vehicles are built. Physical testing is only used to verify the thermal protection package rather than to develop heat shields. The new procedure reduces the number of physical tests and results in a robust, efficient methodology.
Technical Paper

Analysis of Interior Airflow in a Full-Scale Passenger-Compartment Model Using a Laser-Light-Sheet Method

1992-02-01
920206
Flow velocity distributions in the passenger compartment were measured from visualized images of particle flow paths obtained with a full-scale model. The flow paths were visualized using an approach that combined a particle tracing method with a pulse-laser light technique. Air was used as the fluid medium with the full-scale passenger compartment model and water was used as the fluid medium with a one-fourth scale model. A comparison of the results obtained with the two models confirmed that there was good agreement between the flow velocity distributions. Using the full-scale model, measurements were also made of the flow velocity distributions when two dummies were placed in the front-seats.
X