Refine Your Search

Topic

Author

Search Results

Technical Paper

3DCFD-Modeling of a Hydrogen Combustion-Process with Regard to Simulation Stability and Emissions

2023-06-26
2023-01-1209
In the context of the energy transition, CO2-neutral solutions are of enormous importance for all sectors, but especially for the mobility sector. Hydrogen as an energy carrier has therefore been the focus of research and development for some time. However, the development of hydrogen combustion engines is in many respects still in the conception phase. Automotive system providers and engineering companies in the field of software development and simulation are showing great interest in the topic. In a joint project with the industrial partners Robert Bosch GmbH and AVL Germany, combustion in a H2-DI-engine for use in light-duty vehicles was methodically investigated using the CFD tool AVL FIRE®. The collaboration between Robert Bosch GmbH and the Institute for Mobile Systems (IMS) at Otto von Guericke University Magdeburg has produced a model study in which model approaches for the combustion of hydrogen can be analyzed.
Technical Paper

A New Datadriven Approach to Modeling the Combustion of a Diesel Engine in HCCI Mode

2009-04-20
2009-01-0128
The contribution presents a new data driven modeling approach for diesel HCCI combustion. Input parameters of the combustion model are external actuating variables as for example the start of injection. The model incorporates experimental data of the engine in HCCI mode, in the standard diesel mode and in the transition region between both modes. New disclosed dependencies between characteristic values of the cylinder pressure and the fuel burn rate are used to linearize the combustion model for a given operating point. In this paper the validation of the combustion model is discussed based on dynamic measuring data of the urban part of the NEDC. Finally, the combustion model is integrated in a zero-dimensional diesel engine model.
Technical Paper

A Novel CFD Approach for an Improved Prediction of Particulate Emissions in GDI Engines by Considering the Spray-Cooling on the Piston

2015-04-14
2015-01-0385
The emission of particulate matter from future GDI engines has to be optimized, to comply with more stringent emission standards such as EU6. Therefore, the mechanisms responsible for the formation of particles have to be analyzed in detail. The understanding of the in-cylinder processes, necessary for this purpose, can only be achieved by a complementary use of optically accessible single-cylinder engines as well as the numerical simulation. This however leads to great demands on the 3D flow simulation. In this paper the complete CFD approach, incorporating a detailed description of the entire underlying model chain is shown. Particularly the wall surface temperature and the temperature drop due to the interaction with liquid fuel spray were identified as important parameters influencing the spray-wall interaction and thus also the particulate emissions. Nevertheless, in conventional CFD models, the spray cooling cannot be captured because of an assumed constant wall temperature.
Technical Paper

A User-Friendly Program System for Digital Simulation of Hydraulic Equipment

1985-02-01
850532
Mathematical modelling has proved to be a valuable tool for understanding the performance of diesel injection systems. There are several programs for the simulation of conventional injection equipment, but up to now it has been very expensive to simulate new concepts of injection equipment. Therefore a general program system for simulation of transient hydraulic processes - especially in diesel injection systems - has been developped. By this system, any new injection equipment can be simulated user-friendly and without needing to write new programs. The differential equations are solved by mathematical methods, which promise stability in all conditions and offer short calculation times. Since 1983 the program system has been applied to a lot of non-conventional and conventional injection systems and has proved its reliability.
Technical Paper

ABS and ASR for Passenger Cars -Coals and Limits

1989-02-01
890834
Antilock Braking Systems (ABS) and Traction Control Systems (ASR) should ensure maximum stability and steerability even under extreme driving conditions. Since high performance systems additionally improve brake distance and traction within the given physical limits, every vehicle equipped with ABS and ASR offers considerably higher active safety. ABS was introduced into the market by the Robert Bosch GmbH more than ten years ago, and more than 3 million systems have been produced by the end of 1988. Volume production of ASR began in 1987. This paper describes several high-, medium-, and low performance concepts and compares them with regard to safety and performance. Although it seems to be nearly impossible to define a cost/benefit ratio between monetary values and safety, our purpose here is to identify further development strategies through the use of a decision matrix.
Technical Paper

ABS5 and ASR5: The New ABS/ASR Family to Optimize Directional Stability and Traction

1993-03-01
930505
In 1978, Bosch was the first supplier on the market to offer full-function antilock braking systems. In 1993, six years will have passed since Bosch delivered the first traction control system for passenger cars. In the meantime, a considerable amount of experience has been gained through ongoing development and testing. This experience enabled us to define the requirements for directional stability, optimum control strategy, maximum usage of the entire spectrum of drive torque intervention possibilities, and optimized hydraulics for automatic brake intervention. The result is Bosch ABS/ASR5, which in now being introduced to the market. This new ABS/ASR family is designed in modules, which offers high flexibility in function and assembly. Systems are available with traction improvement, or with optimized directional stability and traction. Each version is adapted to the needs of the vehicle drive layout, and adaptable to customer requirements.
Technical Paper

ABS5.3: The New and Compact ABS5 Unit for Passenger Cars

1995-02-01
950757
The transition from the multi-component ABS2 design to the one housing concept of ABS5.0 represented a significant step in improving the ABS unit. ABS5.3 is the successor of ABS5.0 to achieve a highly compact, light weight inexpensive design, for the broad use of ABS in all passenger cars and light trucks. New technologies applied are the staking technique for hydraulic components, the use of microhybrid electronics design and solenoid coils being integrated within the attached electronic control unit. The unit can be manufactured in global alliance achieved by simultaneous engineering, applying CAD, FE-analysis, flow calculation and simulation, noise analysis and quality assurance which includes FMEA, error simulation, durability tests and the dry testing concept. The ABS5.3 design can be easily expanded to Traction Control (ASR).
Technical Paper

ASR - Traction Control - A Logical Extension of ABS

1987-02-01
870337
Control of a car is lost, or considerably reduced, whenever one or more of the wheels exceed the stability limit during braking or accelerating due to excessive brake or drive slip. The problem of ensuring optimum stability, steerability and brake distance of a car during hard braking is solved by means of the well-known Anti-lock Braking System (ABS). The task to guarantee stability, steerability and optimum traction during acceleration, particularly on asymmetrical road surfaces and during cornering maneuvers, is being performed by the traction control system (ASR). Several means to provide an optimum traction control are described, e. g the control of engine torque by influencing the throttle plate and/or the ignition and/or the fuel injection.
Technical Paper

ASR-Traction Control, State of the Art and Some Prospects

1990-02-01
900204
Closed loop vehicle control comprising of the driver, the vehicle and the environment is now achieved by the automatic wheel slip control combination of ABS and ASR. To improve directional control during acceleration, the Robert Bosch Corporation has introduced five ASR-Systems into series production. In one system, the electronic control unit works exclusively with the engine management system to assure directional control. In two other systems, brake intervention works in concert with throttle intervention. For this task, it was necessary to develop different highly sophisticated hydraulic units. The other systems improve traction by controlling limited slip differentials. The safety concept for all five systems includes two redundant micro controllers which crosscheck and compare input and output signals. A Traction Control System can be achieved through a number of torque intervention methods.
Technical Paper

AUTOSAR Gets on the Road - More and More

2012-04-16
2012-01-0014
AUTOSAR (AUTomotive Open System ARchitecture) is a worldwide standard for automotive basic software in line with an architecture that eases exchange and transfer of application software components between platforms or companies. AUTOSAR provides the standardized architecture together with the specifications of the basics software along with the methodology for developing embedded control units for automotive applications. AUTOSAR matured over the last several years through intensive development, implementation and maintenance. Two main releases (R3.2 and R4.0) represent its current degree of maturity. AUTOSAR is driven by so called core partners: leading car manufacturers (BMW, Daimler, Ford, GM, PSA, Toyota, Volkswagen) together with the tier 1 suppliers Continental and Bosch. AUTOSAR in total has more than 150 companies (OEM, Tier X suppliers, SW and tool suppliers, and silicon suppliers) as members from all over the world.
Technical Paper

Adaptive Cruise Control System Aspects and Development Trends

1996-02-01
961010
This paper is based on the experiences with Adaptive Cruise Control (ACC) systems at BOSCH. Necessary components (especially range sensor, curve sensors, actuators and display) are described, roughly specified, and their respective strength and weaknesses are addressed. The system overview contains the basic structure, the main control strategy and the concept for driver-ACC interaction. Afterwards the principal as well as the current technical limits of ACC systems are discussed. The consequences on traffic flow, safety and driver behavior are emphasized. As an outlook, development trends for extended functionality are given for the next generation of driver assistance systems.
Technical Paper

Advances in Design and Implementation of OBD Functions for Diesel Injection Based on a Qualitative Approach to Diagnosis

2000-03-06
2000-01-0365
This paper reports on the application of model-based diagnosis techniques to diesel engine management systems within the Brite-EuRam project “Vehicle Model Based Diagnosis”. We discuss some major requirements that have been identified in this application. In particular, it is essential to solve the inherent variant problem, to reason across different physical domains and to fulfill real-time needs for on-board diagnosis. The main foundation of our approach is to use qualitative models, especially qualitative deviation models, which serve as a coherent modeling paradigm for the different domains. In the project, this technology has been implemented and evaluated for on-board diagnosis on two demonstrator vehicles. The paper also discusses further perspectives of the technology for tools supporting the development and implementation of on-board diagnosis.
Technical Paper

An Efficient Error Correction Method for Smart Sensor Applications in the Motor Vehicle

1993-03-01
930357
In conventional sensor systems, mechanical and electronic components are generally operating at separated locations. Smart sensors integrate mechanical and electronic elements to a single system, thus offering new facilities for a common error compensation. In this concept, a unit-specific temperature dependence and a non-linear characteristic curve of the mechanical sensor element can be tolerated, thus saving a lot of costs in the manufacturing process of the mechanical components. The behaviour of the mechanical sensor element is described by a two-dimensional sensor correction function: Given the output of the mechanical sensor element and a measured value for the temperature, the true measurement value can be calculated by an error correction unit. In this paper, different error correction methods are examined and evaluated which can be used for a wide range of sensor types. They are applied to the example of a short-circuit ring displacement sensor.
Technical Paper

Analysis of Flow Patterns inside an Autothermal Gasoline Reformer

2001-05-07
2001-01-1917
The present paper concentrates on the option of catalytic autothermal reforming of gasoline for fuel cell applications. Major parameters of this process are the “Steam to Carbon Ratio” S/C and the air to fuel ratio λ. Computations assuming thermodynamic equilibrium in the autothermal reactor outlet (ATR) were carried out to attain information about their proper choice, as failure in adjusting the parameters within narrow limits has severe consequences on the reforming process. In order to quantify velocity distribution just ahead the catalyst and to evaluate mixing uniformity we designed an ATR featuring an optical access: Thus flow visualization using PIV (Particle Image Velocimetry) and LIF (Laser Induced Fluorescence) technique is possible. Preliminary PIV-results are presented and compared with CFD computations (Computational Fluid D ynamics).
Technical Paper

Analysis of the Injection of Urea-Water-Solution for Automotive SCR DeNOx-Systems: Modeling of Two-Phase Flow and Spray/Wall-Interaction

2006-04-03
2006-01-0643
The selective catalytic reduction (SCR) based on urea-water-solution is an effective technique to reduce nitrogen oxides (NOx) emitted from diesel engines. A 3D numerical computer model of the injection of urea-water-solution and their interaction with the exhaust gas flow and exhaust tubing is developed to evaluate different configurations during the development process of such a DeNOx-system. The model accounts for all relevant processes appearing from the injection point to the entrance of the SCR-catalyst: momentum interaction between gas phase and droplets evaporation and thermolysis of droplets hydrolysis of isocyanic acid in gas phase heat transfer between wall and droplets spray/wall-interaction two-component wall film including interaction with gas phase and exhaust tube The single modeling steps are verified with visualizations, patternator measurements, phase-doppler-anemometer results and temperature measurements.
Technical Paper

Application of the Object-Oriented Modeling Concept OMOS for Signal Conditioning of Vehicle Control Units

2000-03-06
2000-01-0717
In recent times, the software portion and the complexity of software within automotive electronic control units have grown noticeably and continue to grow. In order to get a grip on the software complexity and the amount of customer-specific software variants, a modeling concept for a structured and easily extensible software architecture is needed. This concept should efficiently support the formation of variants and code reuse without increasing runtime and memory space overhead. In this paper, we present our approach to such a modeling concept: The object-oriented modeling concept OMOS and its application to signal conditioning of vehicle control systems.
Technical Paper

CARTRONIC - An Open Architecture for Networking the Control Systems of an Automobile

1998-02-23
980200
The car industry has reached a point where electronic systems, which were so far essentially autonomous, begin to grow together to a Car-Wide Web. The main driving force is the demand for more safety, security, and comfort implemented economically. Already various parties are working on control networks. In the long run, vehicle motion and dynamic systems, safety, security, comfort as well as mobile multimedia systems will integrate and reach out for the vision of accident-free, comfortable, and well-informed driving. As a foundation for a Car-Wide Web, Bosch is developing an open architecture called CARTRONIC. The essence of CARTRONIC is to define structuring rules, modeling rules and patterns for total, integrated control of vehicles. The rules and patterns allow the mapping of high-level functions onto several physical implementations, for instance one logical description of functional connections could be created for cars with different equipment packages.
Technical Paper

Closed Loop Control at Engine Management System MOTRONIC

1988-02-01
880135
Engine management control systems basically consist of injection and ignition control. Additionally, closed loop control systems incorporating air fuel ratio control, automatic idle speed control and cylinder selective knock control have proven to be essential. To keep the performance stable during the car's lifetime, extensive use is made of self-adaptive strategies. As a new feature of engine management control, the self-adaptive canister purge control improves driveability and prevents the leakage of fuel vapors. To simplify the closed loop control algorithms primarily during transient operation conditions a sophisticated sequential fuel injection is added. The paper presents the aforementioned self-adaptive closed loop control strategies and the MOTRONIC MI. 3 ECU. Future development trends in engine management and drive train control demand powerful communication links like the Controller Area Network (CAN). This requirement and its planned realisation is discussed.
Technical Paper

Desktop Simulation and Calibration of Diesel Engine ECU Software using Software-in-the-Loop Methodology

2014-04-01
2014-01-0189
Current exhaust gas emission regulations can only be well adhered to through optimal interplay of combustion engine and exhaust gas after-treatment systems. Combining a modern diesel engine with several exhaust gas after-treatment components (DPF, catalytic converters) leads to extremely complex drive systems, with very complex and technically demanding control systems. Current engine ECUs (Electronic Control Unit) have hundreds of functions with thousands of parameters that can be adapted to keep the exhaust gas emissions within the given limits. Each of these functions has to be calibrated and tested in accordance with the rest of the ECU software. To date this task has been performed mostly on engine test benches or in Hardware-in-the-Loop (HiL) setups. In this paper, a Software-in-the-Loop (SiL) approach, consisting of an engine model and an exhaust gas treatment (EGT) model, coupled with software from a real diesel engine ECU, will be described in detail.
X