Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A New Approach to Assess the Accuracy of Service Timing Devices for Injection Pumps of Diesel Engines

1999-03-01
1999-01-0823
The correct timing of the diesel injection pump on engine is of major importance for all functions of the engine and for its exhaust emissions, during production pass off as well as in the field. Within the diesel service workshops a variety of devices exist to test the timing of the injection pump on engine. Most of them operate by clamp-on transducer being fitted to the injection pipe. A large uncertainty exists concerning the accuracy of such timing systems. Most diesel engine manufacturers do not have confidence in the timing devices capability and, therefore, do not recommend their usage. A working group within the International Organization for Standardization (ISO) adopted a method for the validation of these measurement systems, which usually is used to judge the capability of measurement gauges for industrial production processes.
Journal Article

A Representative Testing Methodology for System Influence on Automotive Fuel Filtration

2013-04-08
2013-01-0891
Filtration of diesel and gasoline fuel in automotive applications is affected by many external and internal parameters, e.g. vibration, temperature, pressure, flow pulsation, and engine start-stop. Current test procedures for automotive fuel filters, proposed by most of the researchers and organizations including Society for Automotive Engineers (SAE) and International Organization for Standardization (ISO), do not apply the previously mentioned real-world-conditions. These operating conditions, which are typical for an automotive fueling system, have a significant effect on fuel filtration and need to be considered for the accurate assessment of the filter. This requires the development of improved testing procedures that will simulate the operating conditions in a fuel system as encountered in the real world.
Technical Paper

A Small, Light Radar Sensor and Control Unit for Adaptive Cruise Control

1998-02-23
980607
The first generation of radar-sensor-based ACC-Systems will be available in 1998/1999 in Europe. As a first step high end car manufacturers will sell ACC as optional equipment in their top models for a significant add-on price. For this generation good performance was the most important development goal. For the future, however, small, highly integrated systems are needed which easily can be fitted into the body of small cars. High performance and low cost are essential to allow the car manufacturers to sell ACC as standard equipment. A first step in that direction is the “Sensor and Control Unit” developed by Bosch which integrates a FMCW-radar sensor and the ACC-controller in one housing. It is designed for easy manufacturing on existing equipment with standard processes. The design meets the requirements of an early phase with low production figures as well as a phase characterized by increasing numbers and decreasing prices.
Technical Paper

A Two-Measurement Correction for the Effects of a Pressure Gradient on Automotive, Open-Jet, Wind Tunnel Measurements

2006-04-03
2006-01-0568
This paper provides a method that corrects errors induced by the empty-tunnel pressure distribution in the aerodynamic forces and moments measured on an automobile in a wind tunnel. The errors are a result of wake distortion caused by the gradient in pressure over the wake. The method is applicable to open-jet and closed-wall wind tunnels. However, the primary focus is on the open tunnel because its short test-section length commonly results in this wake interference. The work is a continuation of a previous paper [4] that treated drag only at zero yaw angle. The current paper extends the correction to the remaining forces, moments and model surface pressures at all yaw angles. It is shown that the use of a second measurement in the wind tunnel, made with a perturbed pressure distribution, provides sufficient information for an accurate correction. The perturbation in pressure distribution can be achieved by extending flaps into the collector flow.
Technical Paper

AUTOSAR Gets on the Road - More and More

2012-04-16
2012-01-0014
AUTOSAR (AUTomotive Open System ARchitecture) is a worldwide standard for automotive basic software in line with an architecture that eases exchange and transfer of application software components between platforms or companies. AUTOSAR provides the standardized architecture together with the specifications of the basics software along with the methodology for developing embedded control units for automotive applications. AUTOSAR matured over the last several years through intensive development, implementation and maintenance. Two main releases (R3.2 and R4.0) represent its current degree of maturity. AUTOSAR is driven by so called core partners: leading car manufacturers (BMW, Daimler, Ford, GM, PSA, Toyota, Volkswagen) together with the tier 1 suppliers Continental and Bosch. AUTOSAR in total has more than 150 companies (OEM, Tier X suppliers, SW and tool suppliers, and silicon suppliers) as members from all over the world.
Journal Article

Achieving a Scalable E/E-Architecture Using AUTOSAR and Virtualization

2013-04-08
2013-01-1399
Today's automotive software integration is a static process. Hardware and software form a fixed package and thus hinder the integration of new electric and electronic features once the specification has been completed. Usually software components assigned to an ECU cannot be easily transferred to other devices after they have been deployed. The main reasons are high system configuration and integration complexity, although shifting functions from one to another ECU is a feature which is generally supported by AUTOSAR. The concept of a Virtual Functional Bus allows a strict separation between applications and infrastructure and avoids source code modifications. But still further tooling is needed to reconfigure the AUTOSAR Basic Software (BSW). Other challenges for AUTOSAR are mixed integrity, versioning and multi-core support. The upcoming BMW E/E-domain oriented architecture will require all these features to be scalable across all vehicle model ranges.
Technical Paper

Active Pedestrian Protection - System Development

2004-03-08
2004-01-1604
Pedestrian protection is an upcoming field for research and development. Active pedestrian protection is described from a system perspective. In this view, the development of an active pedestrian protection system is shown. First an overview on statistics and legal requirements is given and the system requirements are discussed. Sensor concepts and realizations are shown, also different test methods and results are explained. FE-simulations to complete and later replace additional tests are developed, after cross check with the experimental results. In combination with the shown actuator concept this leads to a full functioning active pedestrian protection system.
Journal Article

Advanced Combustion System Analyses on a 125cc Motorcycle Engine

2011-11-08
2011-32-0557
Environmental consciousness and tightening emissions legislation push the market share of electronic fuel injection within a dynamically growing world wide small engines market. Similar to automotive engines during late 1980's, this opens up opportunities for original equipment manufacturers (OEM) and suppliers to jointly advance small engines performance in terms of fuel economy, emissions, and drivability. In this context, advanced combustion system analyses from automotive engine testing have been applied to a typical production motorcycle small engine. The 125cc 4-stroke, 2-valve, air-cooled, single-cylinder engine with closed-loop lambda-controlled electronic port fuel injection was investigated in original series configuration on an engine dynamometer. The test cycle fuel consumption simulation provides reasonable best case fuel economy estimates based on stationary map fuel consumption measurements.
Technical Paper

Analysis of the In-Cylinder Flow Field / Spray Injection Interaction within a DISI IC Engine Using High-Speed PIV

2011-04-12
2011-01-1288
This study presents measurements of transient flow field and spray structures inside an optically accessible DISI (direct-injection spark-ignition) internal combustion engine. The flow field has a direct effect upon mixture and combustion processes. Given the need to increase the efficiency and performance of modern IC engines and thus reduce emissions a detailed understanding of the flow field is necessary. The method of choice was high-speed two-component particle image velocimetry (PIV) imaging a large field of view (43 x 44 mm₂). To capture the temporal evolution of the main flow features the repetition rate was set to 6 kHz which resolves one image per 1° crank angle (CA) at 1000 rpm. The crank angle range recorded was the latter half of the compression stroke at various engine speeds as well as various charge motions (neutral, tumble and swirl). Moreover, consecutive cycles were recorded allowing a detailed investigation of cycle-to-cycle variations.
Technical Paper

Application Possibilities and Future Chances of “Smart” Sensors in the Motor Vehicle

1989-02-01
890304
Current vehicle concepts necessitate the multiple measurement of several variables required by separate electronic systems in the motor vehicle. There is the need to make sensors bus capable by the incorporation of electronic components in new definition concepts, in other words to make them multiply usable. Such bus concepts are at the present time taking concrete shape. The step of introducing electronics - especially digital - to the measuring point may simultaneously be used to considerably improve utilization of the information content of sensor structures using means of indivdual, digital correction to a greater level than has until now been technically possible. There remains the demand for high stability and reproducibility of the sensor properties over time. These signal preprocessing and information condensation processes on the spot also satisfy the need to relieve the central control units.
Technical Paper

Communication and Information Systems - A Comparison of Ideas, Concepts and Products

2000-03-06
2000-01-0810
How can car manufacturers, which are primary mechanical engineers, become software specialists? This is a question of prime importance for car electronics in the future. Modern vehicles offer a large number of electronic and software based functions to achieve a high level of safety, fuel economy, comfort, entertainment and security which are developed under pressure of regulations, of consumers needs and of competitive time to market aspects. This contribution draws a picture, what could be important in future for in car communication and information system in terms of development process, HW & SW architectures, partnerships in automotive industry and security of industrial properties. For this purpose the automotive development is reviewed and actual examples of system designs are given.
Journal Article

Concept Design of a Parking Brake Module for Standstill Management and Wheel Individual Brake Torque Generation for EVs with Unconventional Service Brake Topology

2022-09-19
2022-01-1186
For electric vehicles the ability for regenerative braking reduces the use of friction brakes. Particularly on the rear axle of vehicles with reduced dynamic requirements such as urban vehicles, this can offer a potential for downsizing or, in extreme cases, even the elimination of the friction brakes on the rear axle. Due to the fact that the rear axle service brakes also represent the typical parking brake location in SoA (State-of-Art) vehicles, a rigorous rethinking of the parking brake concept is necessary to incorporate safe vehicle standstill management for such novel brake system topology. This research study introduces a novel parking brake design that covers SoA but also legal requirements while retaining potentials associated with the elimination of the rear service brakes such as cost and packaging.
Technical Paper

Considerations Implementing a Dual Voltage Power Network

1998-10-19
98C008
Innovative electric systems demand a new approach for the distribution of electric energy in passenger cars. This paper describes a very promising solution-the dual voltage power network with an upper voltage level of 42V, and the considerations which led to the selection of this voltage level. Owing to the significant impact on the industry, a common standard is required. Depending on their profile, OEMs will select their own strategies for implementation, either as a base for innovation or to enhance overall system efficiency. This will lead to different approaches and timeframes.
Technical Paper

Electronic Data Processing Center for Engine Dynamometers

1966-02-01
660751
The dynamometer evaluation of internal combustion engines has involved a great deal of tedious interpretation and presentation of results. In the past, engine test cells have not been fully utilized, and skilled test engineers have been occupied with routine work, time which could better be spent in actual development work. This paper describes steps taken by Robert Bosch GmbH in its new engine test laboratory, to streamline procedures for observation, computation, plotting, and presentation of results. Measurements from the engine test cell are delivered electrically to a central data processing center. These data are recorded, computed electronically, and plotted on an electric plotting machine functioning from punched paper tape.
Technical Paper

Equations and Methods for Testing Hydrogen Fuel Consumption using Exhaust Emissions

2008-04-14
2008-01-1036
Although hydrogen ICE engines have existed in one sort or another for many years, the testing of fuel consumption by way of exhaust emissions is not yet a proven method. The current consumption method for gasoline- and diesel-fueled vehicles is called the Carbon-Balance method, and it works by testing the vehicle exhaust for all carbon-containing components. Through conservation of mass, the carbon that comes out as exhaust must have gone in as fuel. Just like the Carbon-Balance method for gas and diesel engines, the new Hydrogen-Balance equation works on the principle that what goes into the engine must come out as exhaust components. This allows for fuel consumption measurements without direct contact with the fuel. This means increased accuracy and simplicity. This new method requires some modifications to the testing procedures and CVS (Constant Volume Sampling) system.
Technical Paper

Evaluating Different Measures to Improve the Numerical Simulation of the Mixture Formation in a Spark-Ignition CNG-DI-Engine

2017-03-28
2017-01-0567
Compressed Natural Gas (CNG) is a promising alternative fuel for internal combustion engines as its combustion is fuel-efficient and lean in carbon dioxide compared to gasoline. The high octane number of methane gives rise to significant increase of the thermodynamic efficiency due to higher possible compression ratios. In order to use this potential, new stratified mixture formation concepts for CNG are investigated by means of numerical fluid simulations. For decades RANS methods have been the industry standard to model three-dimensional flows. Indeed, there are well-known deficiencies of the widely used eddy viscosity turbulence models based on the applied Boussinesq hypothesis. Reynolds stress turbulence models as well as scale resolving simulation approaches can be appealing alternative choices since they offer higher accuracy. However, due to their large computing effort, they are still mostly impractical for the daily use in industrial product development processes.
Technical Paper

Evolution of Passenger Car Emission in Germany - A Comparative Assessment of Two Forecast Models

1993-11-01
931988
Two models for the forecast of road traffic emissions, independently developed in parallel, are comparatively presented and assessed: EPROG developed by BMW and enlarged by VDA for a national application (Germany) and FOREMOVE, developed for application on European Community scale. The analysis of the methodological character of the two algorithms proves that the models are fundamentally similar with regard to the basic calculation schemes used for the emissions. The same holds true as far as the significant dependencies of the emission factors, and the recognition and incorporation of the fundamental framework referring to traffic important parameters (speeds, mileage and mileage distribution etc) are concerned.
Technical Paper

Experimental Investigations and Computations of Unsteady Flow Past a Real Car Using a Robust Elliptic Relaxation Closure with a Universal Wall Treatment

2007-04-16
2007-01-0104
In the present work we investigated experimentally and computationally the unsteady flow around a BMW car model including wheels*. This simulation yields mean flow and turbulence fields, enabling the study aerodynamic coefficients (drag and lift coefficients, three-dimensional/spatial wall-pressure distribution) as well as some unsteady flow phenomena in the car wake (analysis of the vortex shedding frequency). Comparisons with experimental findings are presented. The computational approach used is based on solving the complete transient Reynolds-Averaged Navier-Stokes (TRANS) equations. Special attention is devoted to turbulence modelling and the near-wall treatment of turbulence. The flow calculations were performed using a robust, eddy-viscosity-based ζ - ƒ turbulence model in the framework of the elliptic relaxation concept and in conjunction with the universal wall treatment, combining integration up to the wall and wall functions.
Technical Paper

Generation of Realistic Communication Scenarios for the Simulation of Automotive Multiplex Systems

1995-02-01
950294
The increasing complexity of communication protocols for asynchronous multiplex systems requires the use of simulation during the optimisation of these protocols or the integration of other control units. Consideration of realistic communication behaviour of the connected control units is essential for performance analysis of multiplex systems. For a first pass, the use of simple statistical distributions (e.g. Poisson distribution) is suitable to get some simulation results. A better way to get realistic results is the approximation of empirical communication data through the use of more complex statistical distribution (e.g. mixed Erlang distributions). In this paper several approaches for the approximation of empirical data are presented. Beside simple statistical distributions (with one parameter), the use of more complex statistical distributions is discussed and methods for the identification of their parameters are presented.
Technical Paper

High Performance Processor Architecture for Automotive Large Scaled Integrated Systems within the European Processor Initiative Research Project

2019-04-02
2019-01-0118
Autonomous driving systems and connected mobility are the next big developments for the car manufacturers and their suppliers during the next decade. To achieve the high computing power needs and fulfill new upcoming requirements due to functional safety and security, heterogeneous processor architectures with a mixture of different core architectures and hardware accelerators are necessary. To tackle this new type of hardware complexity and nevertheless stay within monetary constraints, high performance computers, inspired by state of the art data center hardware, could be adapted in order to fulfill automotive quality requirements. The European Processor Initiative (EPI) research project tries to come along with that challenge for next generation semiconductors. To be as close as possible to series development needs for the next upcoming car generations, we present a hybrid semiconductor system-on-chip architecture for automotive.
X