Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

2005 Ford GT Electrical & Electronics

2004-03-08
2004-01-1259
The Ford GT Program Team was allocated just 22 months from concept to production to complete the Electrical and Electronics systems of the Ford GT. This reduced vehicle program timing - unlike any other in Ford's history -- demanded that the team streamline the standard development process, which is typically 54 months. This aggressive schedule allowed only 12 weeks to design the entire electrical and electronic system architecture, route the wire harnesses, package the components, and manufacture and/or procure all components necessary for the first three-vehicle prototype build.
Technical Paper

A Bayesian Estimate of Vehicle Safety Performance

2005-04-11
2005-01-0822
This paper describes the development of a Bayesian estimate of vehicle safety performance. The vehicle crash testing is conducted often using a very small sample size. With these limited tests, one often has to face the following question, “what is the confidence to meet the design target or government compliance in a subsequent test?” The prediction methods will be discussed to determine the confidence in meeting overall the design requirements based on successful test results with multiple responses and design targets.
Journal Article

A Comparison of the Mid-Size Male THOR and Hybrid III ATDs in Vehicle Frontal Crash Tests

2023-06-27
2022-22-0005
In order to evaluate the THOR-50M as a front impact Anthropomorphic Test Device (ATD) for vehicle safety design, the ATD was compared to the H3-50M in matching vehicle crash tests for 20 unique vehicle models from 2 vehicle manufacturers. For the belted driver condition, a total of fifty-four crash tests were investigated in the 56.3 km/h (35 mph) front rigid barrier impact condition. Four more tests were compared for the unbelted driver and right front passenger at 40.2 km/h (25 mph) in the flat frontal and 30-degree right oblique rigid barrier impact conditions. The two ATDs were also evaluated for their ability to predict injury risk by comparing their fleet average injury risk to Crash Investigation Sampling System (CISS) accident data for similar conditions. The differences in seating position and their effect on ATD responses were also investigated.
Journal Article

A Component Test Methodology for Simulation of Full-Vehicle Side Impact Dummy Abdomen Responses for Door Trim Evaluation

2011-04-12
2011-01-1097
Described in this paper is a component test methodology to evaluate the door trim armrest performance in an Insurance Institute for Highway Safety (IIHS) side impact test and to predict the SID-IIs abdomen injury metrics (rib deflection, deflection rate and V*C). The test methodology consisted of a sub-assembly of two SID-IIs abdomen ribs with spine box, mounted on a linear bearing and allowed to translate in the direction of impact. The spine box with the assembly of two abdominal ribs was rigidly attached to the sliding test fixture, and is stationary at the start of the test. The door trim armrest was mounted on the impactor, which was prescribed the door velocity profile obtained from full-vehicle test. The location and orientation of the armrest relative to the dummy abdomen ribs was maintained the same as in the full-vehicle test.
Technical Paper

A Dynamic Component Rollover Crash Test System

2006-04-03
2006-01-0721
Full vehicle dynamic crash tests are commonly used in the development of rollover detection sensors, algorithms and occupant protection systems. However, many published studies have utilized component level rollover test fixtures for rollover related occupant kinematics studies and restraint system evaluation and development. A majority of these fixtures attempted to replicate only the rotational motion that occurs during the free flight phase of a typical full vehicle rollover crash test. In this paper, a description of the methods used to design a new dynamic component rollover test device is presented. A brief summary of several existing rollover component test methods is included. The new system described in this paper is capable of replicating the transfer of lateral energy into rotational vehicle motion that is present in many tripped laboratory based rollover crash tests.
Technical Paper

A Novel Vehicle Glove Box Design for Mitigating Lower Leg Dummy Responses in a Vehicle Frontal Impact

2018-04-03
2018-01-1326
Crash safety is a complex engineering field wherein a good understanding of energy attenuation capabilities due to an impact of various components and between different/adjacent components in the context of the vehicle environment is imperative. During a frontal impact of the vehicle, an occupant’s lower extremity tends to move forward and could impact one or more components of the instrument panel assembly. A glove box component design may have an influence on occupant’s lower extremity injuries when exposed to the occupant’s knees during a frontal impact. The objective of the present numerical study was to develop a novel glove box design with energy absorbing ribs and then comparing the results with the glove box with a knee airbag (KAB) design to help reduce anthropomorphic test device (ATD) lower leg responses.
Technical Paper

A Review of Human Physiological, Psychological & Human Biomechanical Factors on Perceived Thermal Comfort of Automotive Seats.

2017-03-28
2017-01-1388
Thermal comfort in automotive seating has been studied and discussed for a long time. The available research, because it is focused on the components, has not produced a model that provides insight into the human-seat system interaction. This work, which represents the beginning of an extensive research program, aims to establish the foundation for such a model. This paper will discuss the key physiological, psychological, and biomechanical factors related to perceptions of thermal comfort in automotive seats. The methodology to establish perceived thermal comfort requirements will also be presented and discussed.
Technical Paper

A Review of Modal Choice Models: Case Study for São Paulo

2017-11-07
2017-36-0279
The world urbanization is growing rapidly, bringing many challenges for people to move in dense metropolitan regions. Public transportation is not able to attend the whole demand, and individual transportation modes are struggling with traffic congestion and stringent regulations to reduce its attractiveness, such as the license plate restriction in São Paulo. On the other hand, enablers like smartphones mass penetration, GPS connected services and shared economy have opened space to a whole new range of possible solutions to improve people perception on urban mobility. This work aims to evaluate the modal choice behavior models and understand the success factor of current mobility solutions in the city of São Paulo. The data available through origin/destination researches will be used to validate the models used in this work.
Technical Paper

A Side Impact Taxonomy for USA Field Data

2018-04-03
2018-01-1331
An eleven-group taxonomy was created to classify real-world side crashes from the Crashworthiness Data System (CDS) component of the National Automotive Sampling System (NASS). Three steps were taken to develop the classification scheme: (1) side-impact towaway crashes were identified by examining 1987-2016 model year light passenger vehicles with Collision Deformation Classification (CDC) data from the 1997-2015 calendar years of NASS; (2) case reviews, engineering judgments, and categorization assessments were conducted on these data to produce the eleven-group taxonomy; and (3) taxonomic groups were reviewed relative to regulated crash test procedures. Two of the taxonomic groups were found to have the most frequent crash types, each contributing approximately 22% to the total, followed closely by a third taxonomic group contributing approximately 19%.
Technical Paper

A Study of Crash Energy and Severity in Frontal Vehicle-To-Vehicle Crash Tests

2011-04-12
2011-01-0541
This work presents a study of crash energy and severity in frontal offset Vehicle-To-Vehicle (VTV) crash tests. The crash energy is analyzed based on analytical formulations and empirical data. Also, the crash severity of different VTV tests is analyzed and compared with the corresponding full frontal rigid barrier test data. In this investigation, the Barrier Equivalent Velocity (BEV) concept is used to calculate the initial impact velocity of frontal offset VTV test modes such that the offset VTV tests are equivalent to full frontal impact tests in terms of crash severity. Linear spring-mass model and collinear impact assumptions are used to develop the mathematical formulation. A scale factor is introduced to account for these assumptions and the calculated initial velocity is adjusted by this scale factor. It is demonstrated that the energies due to lateral and rotational velocity components are very small in the analyzed frontal VTV tests.
Technical Paper

A Technical Analysis of a Proposed Theory on Tire Tread Belt Separation-Induced Axle Tramp

2011-04-12
2011-01-0967
Recently, papers have been published purporting to study the effect of rear axle tramp during tread separation events, and its effect on vehicle handling [1, 2]. Based on analysis and physical testing, one paper [1] has put forth a mathematical model which the authors claim allows vehicle designers to select shock damping values during the development process of a vehicle in order to assure that a vehicle will not experience axle tramp during tread separations. In the course of their work, “lumpy” tires (tires with rubber blocks adhered to the tire's tread) were employed to excite the axle tramp resonance, even though this method has been shown not to duplicate the physical mechanisms behind an actual tread belt separation. This paper evaluates the theories postulated in [1] by first analyzing the equations behind the mathematical model presented. The model is then tested to see if it agrees with observed physical testing.
Technical Paper

Acetabulum Injury Investigation of Proposed US-NCAP in OI Mode

2018-04-03
2018-01-0538
In December 2015, the National Highway Traffic Safety Administration (NHTSA) published a Request for Comments on proposed changes to the New Car Assessment Program (NCAP). One potential change is the addition of a frontal oblique impact (OI) crash test using the Test Device for Human Occupant Restraint (THOR). The resultant acetabulum force, which is a unique and specifically defined in the THOR dummy, will be considered as a new injury metric. In this study, the results of ten OI tests conducted by NHTSA on current production mid-sized vehicles were investigated. Specifically, the test data was used to study the lower extremity kinematics for the driver and front passenger THOR dummies. It was found that the acetabulum force patterns varied between the driver and passenger and between the left leg and the right leg of the occupants. The maximum acetabulum force can occur either on the left side or right side of a driver or a front passenger in an OI event.
Technical Paper

Achievements and Exploitation of the AUTOSAR Development Partnership

2006-10-16
2006-21-0019
Reductions of hardware costs as well as implementations of new innovative functions are the main drivers of today's automotive electronics. Indeed more and more resources are spent on adapting existing solutions to different environments. At the same time, due to the increasing number of networked components, a level of complexity has been reached which is difficult to handle using traditional development processes. The automotive industry addresses this problem through a paradigm shift from a hardware-, component-driven to a requirement- and function-driven development process, and a stringent standardization of infrastructure elements. One central standardization initiative is the AUTomotive Open System ARchitecture (AUTOSAR). AUTOSAR was founded in 2003 by major OEMs and Tier1 suppliers and now includes a large number of automotive, electronics, semiconductor, hard- and software companies.
Technical Paper

An Evaluation of Laminated Side Window Glass Performance During Rollover

2007-04-16
2007-01-0367
In this study, the occupant containment characteristics of automotive laminated safety glass in side window applications was evaluated through two full-scale, full-vehicle dolly rollover crash tests. The dolly rollover crash tests were performed on sport utility vehicles equipped with heat-strengthened laminated safety glass in the side windows in order to: (1) evaluate the capacity of laminated side window safety glass to contain unrestrained occupants during rollover, (2) analyze the kinematics associated with unrestrained occupants during glazing interaction and ejection, and (3) to identify laminated side window safety glass failure modes. Dolly rollovers were performed on a 1998 Ford Expedition and a 2004 Volvo XC90 at a nominal speed of 43 mph, with unbelted Hybrid II Anthropomorphic Test Devices (ATDs) positioned in the outboard seating positions.
Technical Paper

An Integrated Design and Appraisal System for Vehicle Interior Packaging

2007-04-16
2007-01-0459
Static seating bucks have long been used as the only means to subjectively appraise the vehicle interior packages in the vehicle development process. The appraisal results have traditionally been communicated back to the requesting engineers either orally or in a written format. Any design changes have to be made separately after the appraisal is completed. Further, static seating bucks lack the flexibility to accommodate design iterations during the evolution of a vehicle program. The challenge has always been on how to build a seating buck quickly enough to support the changing needs of vehicle programs, especially in the early vehicle development phases. There is always a disconnect between what the seating buck represents and what is in the latest design (CAD), since it takes weeks or months to build a seating buck and by the time it is built the design has already been evolved. There is also no direct feedback from seating buck appraisal to the design in CAD.
Technical Paper

Analysis of Neck Tension Force in IIHS Rear Impact Test

2007-04-16
2007-01-0368
This paper examines the neck tension force (Fz) of the BioRid II dummy in the IIHS (Insurance Institute of Highway Safety) rear impact mode. The kinematics of the event is carefully reviewed, followed by a detailed theoretical analysis, paying particular attention to the upper neck tension force. The study reveals that the neck tension should be approximately 450N due to the head inertia force alone. However, some of the tests conducted by IIHS had neck tension forces as high as 1400N. The theory of head hooking and torso downward pulling is postulated in the paper, and various publicly available IIHS rear impact tests are examined against the theory. It is found in the analysis that in many of those tests with high neck tension forces, the locus of the head restraint reaction force travels on the dummy's skull cap, and eventually moves down underneath the skull cap, which causes “hooking” of the head on the stacked-up head restraint foam.
Technical Paper

Analysis of a Frontal Rail Structure in a Frontal Collision

2002-03-04
2002-01-0688
In the course of developing a body-on-frame vehicle for barrier crash performance, automotive manufacturers must take into account numerous regulatory and corporate requirements. One of the most common barrier crash modes is the perpendicular front barrier crash used to verify compliance to F/CMVSS 208. The frontal rail or “horn” is the primary component that absorbs a significant amount of the vehicle's crash energy. The frontal rail collapse determines the vehicle deceleration. This paper evaluates several frontal horn designs for perpendicular front barrier impacts. Two basic frontal rail architectures are evaluated: a uniform rectangular cross section and a tapered cross section. For a 35 mph (15.65 m/s) impact test condition, a parametric design study was commenced to evaluate the affect of gauges, convolutions, triggers, and initiating holes for a total of eleven configurations.
Technical Paper

Approaches to Determining Beneficial Use of Simulink and UML in Automotive Embedded Software Systems

2017-03-28
2017-01-0008
Simulink is a very successful and popular method for modelling and auto-coding embedded automotive features, functions and algorithms. Due to its history of success, university feeder programs, and large third party tool support, it has, in some cases, been applied to areas of the software system where other methods, principles and strategies may provide better options for the software and systems engineers and architects. This paper provides approaches to determine when best to apply UML and when best to apply Simulink to a typical automotive feature. Object oriented software design patterns as well as general guidelines are provided to help in this effort. This paper's intent is not to suggest a replacement for Simulink but to provide the software architects and designers additional options when decomposing high level requirements into reusable software components.
Technical Paper

Aqueous Corrosion of Experimental Creep-Resistant Magnesium Alloys

2006-04-03
2006-01-0257
This paper presents a comparison of aqueous corrosion rates in 5% NaCl solution for eight experimental creep-resistant magnesium alloys considered for automotive powertrain applications, as well as three reference alloys (pure magnesium, AM50B and AZ91D). The corrosion rates were measured using the techniques of titration, weight loss, hydrogen evolution, and DC polarization. The corrosion rates measured by these techniques are compared with each other as well as with those obtained with salt-spray testing using ASTM B117. The advantages and disadvantages of the various corrosion measurement techniques are discussed.
Technical Paper

Automotive and Regulatory Trends in Brazil

2003-03-03
2003-01-0568
Brazil has seen an increase in awareness of the effects of automotive safety and emissions, advanced by magazines such as “Quatro Rodas”. Being a member of the Mercosur organization, Brasil supports regulatory harmonization based on European requirements by 31 December 2002. U.S. FMVSS-based requirements that currently do not conflict with ECE-based Mercosur requirements are allowed as alternatives until 31 December 2004. The implications of these regulatory changes for automotive OEMs remain to be seen, but if recent public domain crash tests are any indication of what is to come, Brazil will quickly become the safety leader within South America.
X