Refine Your Search

Topic

Author

Search Results

Technical Paper

Analysis of the Ignition Behaviour of the ASTM D-613 Primary Reference Fuels and Full Boiling Range Diesel Fuels in the Ignition Quality Tester (IQT™) - Part III

1999-10-25
1999-01-3591
This paper reports on the third part of a continued study (SAE Papers 961182, 971636) to develop the Ignition Quality Tester (IQT™). Past research has shown that this automated laboratory/refinery apparatus can be used to accurately predict the cetane number of middle distillates and alternative fuels using small sample volumes (< 50 mL). The paper reports on the main objective of a study performed by Advanced Engine Technology Ltd. (AET), in co-operation with its research partners. The primary research objective of this work is to further the understanding of fuel preparation (fuel air mixing) and start of combustion processes in the IQT™. Key to this understanding is the manner in which single molecule compounds and full boiling-range diesel fuels behave during these processes. Insights are provided into the manner in which the American Society for Testing and Materials (ASTM) D-613 primary reference fuels (PRFs) undergo fuel preparation and start of combustion in the IQT™.
Technical Paper

Coal-Water-Slurry Autoignition in a High-Speed Detroit Diesel Engine

1994-10-01
941907
Autoignition of coal-water-slurry (CWS) fuel in a two-stroke engine operating at 1900 RPM has been achieved. A Pump-Line-Nozzle (PLN) injection system, delivering 400mm3/injection of CWS, was installed in one modified cylinder of a Detroit Diesel Corporation (DI)C) 8V-149TI engine, while the other seven cylinders remained configured for diesel fuel. Coal Combustion was sustained by maintaining high gas and surface temperatures with a combination of hot residual gases, warm inlet air admission, ceramic insulated components and increased compression ratio. The coal-fueled cylinder generated 85kW indicated power (80 percent of rated power), and lower NOx levels with a combustion efficiency of 99.2 percent.
Technical Paper

Combustion and Emissions Characteristics of Minimally Processed Methanol in a Diesel Engine Without Ignition Assist

1994-03-01
940326
Mixtures of methanol, water and heavier alcohols, simulating “raw’ methanol at various levels of processing, were tested in a constant volume combustion apparatus (CVCA) and in a single-cylinder, direct-injection diesel engine. The ignition characteristics determined in the CVCA indicated that the heavier alcohols have beneficial effects on the auto-ignition quality of the fuels, as compared to pure methanol. Water, at up up to 10 percent by volume, has little effect on the ignition quality. In all cases, however, the cetane numbers of the alcohol mixtures were very low. The same fuels were tested in a single cylinder engine, set-up in a configuration similar to current two-valve DI engines, except that the compression ratio was increased to 19:1. Pure methanol and five different blends of alcohols and water were tested in the engine at five different speed-load conditions.
Technical Paper

Control of Diesel Exhaust Emissions in Underground Coal Mines - Single-Cylinder Engine Optimization for Water-in-Fuel Miscroemulsions

1983-02-01
830553
The increased use of diesel-powered equipment in underground mines has prompted interest in reducing their exhaust pollutants. Control of particulate emissions without substantial penalties in other emissions or fuel consumption is necessary. This paper describes test results on a prechaaber, naturally-aspirated, four-cycle diesel engine in which two different concentrations of water-in-fuel emulsions were run. The independent variables comprising the test matrix were fuel, speed, load, injection timing, injection rate, and compression ratio. The dependent variables of the experiment included particulate and gaseous emissions and engine thermal efficiency. Regression analysis was performed on the data to determine how particulate emissions were affected by fuel and engine parameters. Results of this analysis indicated that substantial reductions in particulate emissions could be obtained by utilizing water-in-fuel emulsions.
Technical Paper

Control of Diesel Exhaust Emissions in Underground Coal Mines - Steady-State and Transient Engine Tests with a Five Percent Water-in-Fuel Microemulsion

1983-02-01
830555
This paper is the fourth in a series describing work sponsored by the Bureau of Mines to reduce diesel particulate and gaseous emissions through fuel modification. A stabilized water microemulsion fuel developed in previous work was tested in a Caterpillar 3304 NA four-cylinder engine with compression ratio and injection timing and rate optimized for this fuel to demonstrate the emissions reductions achieved. It was tested in both standard and optimum configurations with both baseline DF-2 and optimized microemulsion fuels. Gaseous and particulate data are presented from steady-state tests using a computer-operated mini-dilution tunnel and from transient tests using a total exhaust dilution tunnel. The optimized engine-fuel combination was effective in reducing particulates and oxides of nitrogen in steady-state tests. However, the standard engine-fuel combination provided the lowest particulate and NOx emissions in transient tests.
Technical Paper

Diesel Fuel Composition Effects on Ignition and Emissions

1993-10-01
932735
Four broad boiling range materials, representative of current and future feedstocks for diesel fuel, were processed to two levels of sulfur and aromatic content. These materials were then distilled into six to eight fractions each. The resulting 63 fuels were then characterized physically and chemically, and tested in both a constant volume combustion apparatus and a single cylinder diesel engine. The data obtained from these analyses and tests have been analyzed graphically and statistically. The results of the initial statistical analysis, reported here, indicate that the ignition quality of a fuel is dependent not only on the overall aromatic content, but also on the composition of the material formed during hydroprocessing of the aromatics. The NOx emissions, however, are related mainly to the aromatic content of the fuel, and the structure of the aromatic material.
Technical Paper

Diesel Fuel Ignition Quality as Determined in the Ignition Quality Tester (IQT)

1996-05-01
961182
A combustion-based analytical method, initially developed by the Southwest Research Institute (SwRI) referred to as the Constant Volume Combustion Apparatus (CVCA), has been further researched/developed by an SwRI licensee (Advanced Engine Technology Ltd.) as an Ignition Quality Tester (IQT) for laboratories and refineries. The IQT software/hardware system permits rapid and precise determination of ignition quality for middle distillate fuels. Its features, such as low fuel volume requirement, complete test automation, and self-diagnosis, make it highly suitable for commercial oil industry and research applications. Operating and test conditions were examined in the context of providing a high correlation with cetane number (CN), as determined by the ASTM D-613 method. Preliminary investigation indicates that the IQT results are highly repeatable (± 0.30 CN), providing a high sensitivity to CN variation over the 33 to 58 CN range.
Technical Paper

Diesel Fuel Ignition Quality as Determined in the Ignition Quality Tester (IQT) - Part II

1997-05-01
971636
A combustion-based analytical method, initially developed by the Southwest Research Institute (SwRI) and referred to as the Constant Volume Combustion Apparatus (CVCA), has been further researched/developed by an SwRI licensee (Advanced Engine Technology Ltd.). This R&D has resulted in a diesel fuel Ignition Quality Tester (IQT) that permits rapid and precise determination of the ignition quality of middle distillate and alternative fuels. Its features, such as low fuel volume requirement, complete test automation, and self-diagnosis, make it highly suitable for commercial oil industry and research applications. A preliminary investigation, reported in SAE paper 961182, has shown that the IQT results are highly correlated to the ASTM D-613 cetane number (CN). The objective of this paper is to report on efforts to further refine the original CN model and report on improvements to the IQT fuel injection system.
Technical Paper

Diesel Fuel Ignition Quality as Determined in the Ignition Quality Tester (IQT™) - Part IV

2001-09-24
2001-01-3527
This paper reports on the fourth part of a continued study on further research and development with the automated Ignition Quality Tester (IQT™). Research over the past six years (reported in SAE papers #961182, 971636 and 1999-01-3591) has demonstrated the capabilities of this automated apparatus to measure the ignition quality and accurately determine a derived cetane number (DCN) for a wide range of middle distillate and non-conventional diesel fuels. The present paper reports on a number of separate investigations supporting these continued studies.
Technical Paper

Dimethoxy Methane in Diesel Fuel: Part 1. The Effect of Fuels and Engine Operating Modes on Emissions of Toxic Air Pollutants and Gas/Solid Phase PAH

2001-09-24
2001-01-3627
The objective of this study was to quantify engine-out emissions of potentially toxic compounds from a modern diesel engine operated with different fuels including 15% v/v dimethoxy methane in a low sulfur diesel fuel. Five diesel fuels were examined: a low-sulfur, low-aromatic hydrocracked (∼1 ppm) fuel, the same low sulfur fuel containing 15% v/v dimethoxy methane, a Fischer-Tropsch fuel, a CARB fuel, and an EPA number 2 certification fuel. A DaimlerChrysler OM611 CIDI engine was controlled with a SwRI Rapid Prototyping Electronic Control system. The engine was operated over 4 speed-load modes. Each operating mode and fuel combination was run in triplicate. Thirty three potentially toxic compounds were measured for each fuel and mode.
Technical Paper

Dimethoxy Methane in Diesel Fuel: Part 2. The Effect of Fuels on Emissions of Toxic Air Pollutants and Gas/Solid Phase PAH Using a Composite Of Engine Operating Modes

2001-09-24
2001-01-3628
A weighted composite of four engine-operating modes, representative of typical operating modes found in the US FTP driving schedule, were used to compare engine-out emissions of toxic compounds using five diesel fuels. The fuels examined were: a low-sulfur low-aromatic hydrocracked diesel fuel, the same low-sulfur fuel containing 15% v/v dimethoxy methane, a Fischer-Tropsch fuel, a CARB fuel, and a EPA number 2 diesel certification fuel. A DaimlerChrysler OM611 CIDI engine was operated over 4 speed-load modes: mode 5, 2600 RPM, 8.8 BMEP; mode 6, 2300 RPM, 4.2 BMEP; mode 10, 2000 RPM, 2.0 BMEP; mode 11, 1500 RPM, 2.6 BMEP. The four engine operating modes were weighted as follows: mode 5, 25/1200; mode 6, 200/1200; mode 10, 375/1200; and mode 11, 600/1200. Each operating mode and fuel combination was run in triplicate.
Technical Paper

Dimethoxy Methane in Diesel Fuel: Part 3. The Effect of Pilot Injection, Fuels and Engine Operating Modes on Emissions of Toxic Air Pollutants and Gas/Solid Phase PAH

2001-09-24
2001-01-3630
The objective of this study was to quantify the effect of pilot fuel injection on engine-out emissions of potentially toxic compounds from a modern diesel engine operated with different fuels including 15% v/v dimethoxy methane in a low-sulfur diesel fuel. Five diesel fuels were examined: a low-sulfur (∼1 ppm), low aromatic, hydrocracked fuel, the same low-sulfur fuel containing 15% v/v dimethoxy methane, a Fischer-Tropsch fuel, a California reformulated fuel, and a EPA number 2 certification fuel. A DaimlerChrysler OM611 CIDI engine was controlled with a SwRI Rapid Prototyping Electronic Control system. The pilot fuel injection was either turned off or turned on with engine control by either Location of Peak Pressure (LPP) of combustion or the original equipment manufacturer (OEM) calibration strategy. These three control strategies were compared over 2 speed-load modes run in triplicate. Thirty-three potentially toxic compounds were measured.
Technical Paper

EPA HDEWG Program - Statistical Analysis

2000-06-19
2000-01-1859
The U.S. Environmental Protection Agency (EPA) formed a Heavy-Duty Engine Working Group (HDEWG) in the Mobile Sources Technical Advisory Subcommittee in 1995. The goal of the HDEWG was to help define the role of the fuel in meeting the future emissions standards in advanced technology engines (beyond 2004 regulated emissions levels). A three-phase program was developed. This paper presents the results of the statistical analysis of the data collected in the Phase II program. Included is a description of the design of the fuel test matrix, and a listing of the regression equations developed to predict emissions as a function of fuel density, cetane number, monoaromatics, and polyaromatics. Also included is a description of selected analyses of the emissions from a smaller set of fuel data that allowed direct comparison of the effects of natural and boosted cetane number.
Technical Paper

EPA HDEWG Program-Engine Tests Results

2000-06-19
2000-01-1858
In 1997 the US EPA formed a Heavy-Duty Engine Working Group (HDEWG) in the Mobile Sources Technical Advisory Subcommittee to address the questions related to fuel property effects on heavy-duty diesel engine emissions. The Working Group consisted of members from EPA and the oil refining and engine manufacturing industries. The goal of the Working Group was to help define the role of the fuel in meeting the future emissions standards in advanced technology engines (beyond 2004 regulated emissions levels). To meet this objective a three-phase program was developed. Phase I was designed to demonstrate that a prototype engine, located at Southwest Research Institute, represented similar emissions characteristics to that of certain manufacturers prototype engines. Phase II was designed to document the effects of selected fuel properties using a statistically designed fuel matrix in which cetane number, density, and aromatic content and type were the independent variables.
Technical Paper

Effects of Different Injector Hole Shapes on Diesel Sprays

1992-02-01
920623
Twelve different hole shapes for diesel injector tips were characterized with DF-2 diesel fuel for spray cone angle over a range of injection pressures from 21 MPa (3 kpsi) to 69 MPa (10 kpsi). A baseline and two of the most radical designs were also tested for drop-size distribution and liquid volume fraction (liquid fuel-air ratio) over a range of pressures from 41 MPa (6 kpsi) to 103 MPa (15 kpsi). All hole shapes were circular in cross-section with minimum diameters of 0.4 mm (0.016 in.), and included converging and diverging hole shapes. Overall hole lengths were constant at 2.5 mm (0.098 in.), for an L/d of 6.2. However, the effective L/d may have been less for some of the convergent and divergent shapes.
Technical Paper

Effects of Exhaust Gas Recirculation on the Degradation Rates of Lubricating Oil in a Heavy-Duty Diesel Engine

1999-10-25
1999-01-3574
The specific goal of this project was to determine if there is a difference in the lube oil degradation rates in a heavy-duty diesel engine equipped with an EGR system, as compared to the same configuration of the engine, but minus the EGR system. A secondary goal was to develop FTIR analysis of used lube oil as a sensitive technique for rapid evaluation of the degradation properties of lubricants. The test engine selected for this work was a Caterpillar 3176 engine. Two engine configurations were used, a standard 1994 design and a 1994 configuration with EGR designed to meet the 2004 emissions standards. The most significant changes in the lubricant occurred during the first 50-100 hours of operation. The results clearly demonstrated that the use of EGR has a significant impact on the degradation of the engine lubricant.
Technical Paper

Effects of Fuel Properties and Composition on the Temperature Dependent Autoignition of Diesel Fuel Fractions

1992-10-01
922229
The work described in this paper includes the preparation and combustion testing of fuels that consist of fractions of several different distillate materials that represent different feed stocks and different processing technology. Each of the fuels have been tested in a constant volume combustion apparatus to determine the relationship between ignition delay time, temperature and cetane number. These relationships are discussed in terms of the composition and properties of each fraction, and the processing that each of the feedstocks were exposed to.
Technical Paper

Effects of Water-Fuel Emulsions on Spray and Combustion Processes in a Heavy-Duty DI Diesel Engine

2002-10-21
2002-01-2892
Significant reductions of particulate matter (PM) and nitrogen oxides (NOx) emissions from diesel engines have been realized through fueling with water-fuel emulsions. However, the physical and chemical in-cylinder mechanisms that affect these pollutant reductions are not well understood. To address this issue, laser-based and chemiluminescence imaging experiments were performed in an optically-accessible, heavy-duty diesel engine using both a standard diesel fuel (D2) and an emulsion of 20% water, by mass (W20). A laser-based Mie-scatter diagnostic was used to measure the liquid-phase fuel penetration and showed 40-70% greater maximum liquid lengths with W20 at the operating conditions tested. At some conditions with low charge temperature or density, the liquid phase fuel may impinge directly on in-cylinder surfaces, leading to increased PM, HC, and CO emissions because of poor mixing.
Technical Paper

Emissions Measurements in a Steady Combusting Spray Simulating the Diesel Combustion Chamber

1992-02-01
920185
In-cylinder control of particulate emissions in a diesel engine depends on careful control and understanding of the fuel injection and air/fuel mixing process. It is extremely difficult to measure physical parameters of the injection and mixing process in an operating engine, but it is possible to simulate some diesel combustion chamber conditions in a steady flow configuration whose characteristics can be more easily probed. This program created a steady flow environment in which air-flow and injection sprays were characterized under non-combusting conditions, and emissions measurements were made under combusting conditions. A limited test matrix was completed in which the following observations were made. Grid-generated air turbulence decreased particulates, CO, and unburned hydrocarbons, while CO2 and NOx levels were increased. The turbulence accelerated combustion, resulting in more complete combustion and higher temperatures at the measurement location.
Technical Paper

Engine and Constant Volume Bomb Studies of Diesel ignition and Combustion

1988-10-01
881626
Changing fuel quality, increasingly stringent exhaust emission standards, demands for higher efficiency, and the trend towards higher specific output, all contribute to the need for a better understanding of the ignition process in diesel engines. In addition to the impact on the combustion process and the resulting performance and emissions, the ignition process controls the startability of the engine, which, in turn, governs the required compressions ratio and several of the other engine design parameters. The importance of the ignition process is reflected in the fact that the only combustion property that is specified for diesel fuel is the ignition delay time as indicated by the cetane number. The objective of the work described in this paper was to determine the relationship between the ignition process as it occurs in an actual engine, to ignition in a constant volume combustion bomb.
X