Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

In-Situ Measurement of Component Efficiency in Connected and Automated Hybrid-Electric Vehicles

2020-04-14
2020-01-1284
Connected and automated driving technology is known to improve real-world vehicle efficiency by considering information about the vehicle’s environment such as traffic conditions, traffic lights or road grade. This study shows how the powertrain of a hybrid-electric vehicle realizes those efficiency benefits by developing methods to directly measure real-time transient power losses of the vehicle’s powertrain components through chassis-dynamometer testing. This study is a follow-on to SAE Technical Paper 2019-01-0116, Test Methodology to Quantify and Analyze Energy Consumption of Connected and Automated Vehicles [1], to understand the sources of efficiency gains resulting from connected and automated vehicle driving. A 2017 Toyota Prius Prime was instrumented to collect power measurements throughout its powertrain and driven over a specific driving schedule on a chassis dynamometer.
Technical Paper

In-Situ Measurement of Holistic Powertrain Efficiency in Vehicles

2018-04-03
2018-01-0324
Conventional methods for determining automotive powertrain efficiency include (1) component-level testing, such as engine dynamometer, transmission stand or axle stand testing, (2) simulations based on component level test data and (3) vehicle-level testing, such as chassis dynamometer or on-road testing. This paper focuses on vehicle-level testing to show where energy is lost throughout a complete vehicle powertrain. This approach captures all physical effects of a vehicle driving in real-world conditions, including torque converter lockup strategies, transmission shifting, engine control strategies and inherent mechanical efficiency of the components. A modern rear-wheel drive light duty pickup truck was instrumented and tested on a chassis dynamometer. Power was measured at the engine crankshaft output, the rear driveshaft and at the dynamometer.
Technical Paper

In-Situ Measurement of Transmission Efficiency in Vehicles

2017-03-28
2017-01-1095
SAE Recommended Practice J1540 [1] specifies test procedures to map transmission efficiency and parasitic losses in a manual transmission. The procedure comprises two parts. The first compares input and output torque over a range of speed to determine efficiency. The second measures parasitic losses at zero input torque over a range of speed. As specified in J1540, efficiency of transmissions is routinely measured on a test-stand under steady torque and speed [2] [3]. While such testing is useful to compare different transmissions, it is unclear whether the “in-use” efficiency of a given transmission is the same as that measured on the stand. A vehicular transmission is usually mated to a reciprocating combustion engine producing significant torque and speed fluctuations at the crankshaft. It is thus a valid question whether the efficiency under such pulsating conditions is the same as that under steady conditions.
Journal Article

Understanding the Octane Appetite of Modern Vehicles

2016-04-05
2016-01-0834
Octane appetite of modern engines has changed as engine designs have evolved to meet performance, emissions, fuel economy and other demands. The octane appetite of seven modern vehicles was studied in accordance with the octane index equation OI=RON-KS, where K is an operating condition specific constant and S is the fuel sensitivity (RONMON). Engines with a displacement of 2.0L and below and different combinations of boosting, fuel injection, and compression ratios were tested using a decorrelated RONMON matrix of eight fuels. Power and acceleration performance were used to determine the K values for corresponding operating points. Previous studies have shown that vehicles manufactured up to 20 years ago mostly exhibited negative K values and the fuels with higher RON and higher sensitivity tended to perform better.
X