Refine Your Search

Topic

Author

Search Results

Technical Paper

A Model Based Definition of a Reference CO2 Emissions Value for Passenger Cars under Real World Conditions

2018-05-30
2018-37-0031
With the adoption of the Worldwide harmonized Light Vehicles Test Procedure (WLTP) and the Real Driving Emissions (RDE) regulations for testing and monitoring the vehicle pollutant emissions, as well as CO2 and fuel consumption, the gap between real world and type approval performances is expected to decrease to a large extent. With respect to CO2, however, WLTP is not expected to fully eliminate the reported 40% discrepancy between real world and type approval values. This is mainly attributed to the fact that laboratory tests take place under average controlled conditions that do not fully replicate the environmental and traffic conditions experienced over daily driving across Europe. In addition, any uncertainties of a pre-defined test protocol and the vehicle operation can be optimized to lower the CO2 emissions of the type approval test. Such issues can be minimized in principle with the adoption of a real-world test for fuel consumption.
Technical Paper

A Novel Start Algorithm for CNG Engines Using Ion Sense Technology

2000-10-16
2000-01-2800
This paper presents a start algorithm that is able to control the air/fuel ratio (AFR) during the cranking phase and immediately hereafter, where the ordinary λ-control is not yet enabled. The control is based on the ion sense principle, which means that a current through the spark plug is measured directly after the spark has disappeared. This current is a measure for the temperature and therefore of the combustion in the cylinder. This is an excellent way to start a CNG (Compressed Natural Gas) engine with unknown gas qualities. A typical example of application is when the vehicle is almost out of fuel and is refueled at a motel stop. The small amount of old fuel that is left in the system will mix with the new fuel resulting in an unknown fuel quality. The control system shall then be able to start the engine directly or after an accommodation over night. During the last condition, the oxygen sensor is still cold and thus not able to correct for fuel quality changes.
Technical Paper

A Seat Sensitivity Study on Vertical Vibrations and Seat Pressure Distributions using Numerical Models

2004-06-15
2004-01-2142
The introduction of a new comfortable car seat or interior is a time consuming and costly process for car and seat manufacturers. The application of numerical models of human and seat could facilitate this process. Vertical vibrations and seat pressure distributions are two objective parameters that have been related to the subjective feeling of (dis)comfort that can be predicted by numerical tools. In this paper, human models suitable for prediction of human behaviour in vertical vibrations and seat pressure distributions are applied in a seat sensitivity study. The objective of this paper is to evaluate the applicability of the human models as design tools for car and seat developers in an early stage of the design process. The sensitivity of the output of the models for variations in seat characteristics for seat developers in the design process of a new comfortable car seat has been studied.
Technical Paper

A Stochastic Virtual Testing Approach in Vehicle Passive Safety Design: Effect of Scatter on Injury Response

2005-04-11
2005-01-1763
Virtual testing has grown to be an efficient tool in vehicle passive safety design. Most simulations currently are deterministic. Since the responses observed in real-life and standardized tests are greatly affected by scatter, a stochastic approach should be adopted in order to improve the predictability of the numerical responses with respect to the experimental data. In addition, an objective judgement of the performance of numerical models with respect to experimental data is necessary in order to improve the reliability of virtual testing. In the European VITES & ADVANCE project the software tool Adviser was developed in order to fulfil these two requirements. With Adviser, stochastic simulations can be performed and the quality of the numerical responses with respect to the experimental can be objectively rated using pre-defined and user-defined objective correlation criteria. The software Adviser was used to develop a stochastic HybridIII 50th% Madymo numerical model.
Technical Paper

Advances in numerical modelling of crash dummies

2001-06-04
2001-06-0007
Nowadays virtual testing and prototyping are generally accepted methods in crash safety research and design studies. Validated numerical crash dummy models are necessary tools in these methods. Computer models need to be robust, accurate and CPU efficient, where the balance between accuracy and efficiency is depending on the nature of the study performed. This paper presents the application of advanced multibody-modelling techniques, in order to generate crash dummy models that are accurate as well as CPU efficient. Two techniques, deformable body modelling and arbitrary surface modelling, are combined. Their application is presented by means of an example model: the Hybrid III 50th percentile thorax. The method for generating the model is explained, after which the accuracy and efficiency of the model is illustrated by presenting some simulation results.
Technical Paper

Appliance of High EGR Rates With a Short and Long Route EGR System on a Heavy Duty Diesel Engine

2007-04-16
2007-01-0906
The goal of this work was to investigate the possibilities of applying high EGR rates with low NOx and PM emission levels on a two-stage turbocharged 12 liter heavy duty diesel engine. The EGR is applied by using a long and short route EGR system. For the ESC operating points A25 and C100 EGR is applied, such that the NOx emission is 0.5 g/kWh. Lowest PM level and BSFC are achieved when long route EGR is applied in A25 and short route is applied in C100. Increasing the fuel line pressure is an effective way to reduce PM at high EGR rate engine running conditions. At a fuel line pressure of 2400 bar PM emission are 0.06 g/kWh for A25 and 0.54 g/kWh for C100. At C100 the PM reduction coincides with also a significant fuel consumption improvement. Retarding the injection timing at C100 can improve the PM emission further to a level of 0.13 g/kWh at the expense of an increase in BSFC.
Technical Paper

Application of a Finite Element-Based Human Arm Model for Airbag Interaction Analysis

2004-06-15
2004-01-2147
Interaction of the human arm and deploying airbag has been studied in the laboratory using post mortem human subjects (PMHS). These studies have shown how arm position on the steering wheel and proximity to the airbag prior to deployment can influence the risk of forearm bone fractures. Most of these studies used older driver airbag modules that have been supplanted by advanced airbag technology. In addition, new numerical human body models have been developed to complement, and possibly replace, the human testing needed to evaluate new airbag technology. The objective of this study is to use a finite element-based numerical (MADYMO) model, representing the human arm, to evaluate the effects of advanced driver airbag parameters on the injury potential to the bones of the forearm. The paper shows how the model is correlated to Average Distal Forearm Speed (ADFS) and arm kinematics from two PMHS tests.
Technical Paper

Automated Model Fit Tool for SCR Control and OBD Development

2009-04-20
2009-01-1285
Reaching EUROVI Heavy Duty emission limits will result in more testing time for developing control and OBD algorithms than to reach EUROV emissions. It is likely that these algorithms have to be adapted for a WHTC (World Heavy Duty Transient Cycle) for EUROVI. This cycle when started cold can only be performed a limited times a day on the engine testbench, because of the cooling down time. The development time and cost increases to reach EUROVI emission levels. Accurate simulation tools can reduce the time and costs by reducing the amount of tests required on the testbench. In order to use simulation tools to develop pre calibrations, the models must be fitted and validated. This paper will focus on the fit process of an SCR (Selective Catalytic Reduction) model. A unique test procedure has been developed to characterize an SCR catalyst using an engine testbench in ±2 days. This data is used in an automatic SCR fit tool to obtain the model parameters in a few days.
Technical Paper

Control Oriented Engine Model Development for Model-Based PPC Control

2022-03-29
2022-01-0480
A model-based control approach is proposed to give proper reference for the feed-forward combustion control of Partially Pre-mixed Combustion (PPC) engines. The current study presents a simplified first principal model, which has been developed to provide a base estimation of the ignition properties. This model is used to describe the behavior of a single-cylinder heavy-duty diesel engine fueled with a mix of bio-butanol and n-heptane (80vol% bio-butanol and 20 vol% n-heptane). The model has been validated at 8 bar gross Indicated Mean Effective Pressure (gIMEP) in PPC mode. Inlet temperature and pressure have been varied to test the model capabilities. First the experiments were conducted to generate reference points with BH80 under PPC conditions. And then CFD simulations were conducted to give initial parameter set up, e.g. fuel distribution, zone dividing, for the multi-zone model.
Journal Article

Cost and Fuel Efficient SCR-only Solution for Post-2010 HD Emission Standards

2009-04-20
2009-01-0915
A promising SCR-only solution is presented to meet post-2010 NOx emission targets for heavy duty applications. The proposed concept is based on an engine from a EURO IV SCR application, which is considered optimal with respect to fuel economy and costs. The addition of advanced SCR after treatment comprising a standard and a close-coupled SCR catalyst offers a feasible emission solution, especially suited for EURO VI. In this paper, results of a simulation study are presented. This study concentrates on optimizing SCR deNOx performance. Simulation results of cold start FTP and WHTC test cycles are presented to demonstrate the potential of the close-coupled SCR concept. Comparison with measured engine out emissions of an EGR engine shows that a close-coupled SCR catalyst potentially has NOx reduction performance as good as EGR. Practical issues regarding the use of an SCR catalyst in close-coupled position will be addressed, as well as engine and exhaust layout.
Technical Paper

Detailed Modelling of the Lumbar Spine for Investigation of Low Back Pain

2005-06-14
2005-01-2716
Comfort of car seats is becoming an increasingly important issue in the design of vehicles for professional use as well as for personal use. People using cars professionally, like drivers of taxis, trucks, and busses, often have to drive for prolonged periods sometimes leading to physical complaints, like e.g. low back pain. Apart from experimental investigations, virtual testing is becoming more important to get more insight in the problem of low back pain. This paper presents a finite element (FE) model of the lumbar spine (L1-L5). The model contains a detailed geometric description of the lumbar spine and realistic material properties. On a segmental level and as a whole, the model's response was verified for quasi-static and dynamic conditions based on experimental data published in literature. The quasi-static segmental validation comprised of compression, posterior, anterior and lateral shear, flexion and extension, lateral bending and axial torque.
Technical Paper

Determination of Human-Seat-Interaction in Vertical Vibrations in MADYMO

2002-11-18
2002-01-3083
The importance of automotive comfort is increasing, both socially and economically. Especially professional drivers often have comfort-related physical complaints, such as lower back pain. In addition, car manufacturers can use comfort to distinguish their cars from their competitors. However, the development and design of a new, more comfortable car seat is very time consuming and costly. The use of computer models of human and seat could facilitate this process. MADYMO human and seat models offer the possibility to predict comfort. This paper describes the application of the MADYMO multi-body 50th percentile human model for determination of human-seat interaction in vertical vibrations. The validation of the human model is based on volunteer tests with both a rigid seat and a standard car seat. The human model shows a good correlation with the volunteers.
Technical Paper

Development of a Model-Based Controller for a Three-Way Catalytic Converter

2002-03-04
2002-01-0475
The performance of a three-way catalytic converter under transient operation can be improved by controlling the level of oxygen stored on ceria at some optimal level. A model-based controller, with the model estimating the level of ceria coverage by oxygen, can achieve this goal. A simple, dynamic model is based on step responses of the converter and is used to train the controller off-line. The controller is a neuro-fuzzy approximation of a model predictive controller. Thus, it retains a high performance while being less computationally involving. The system performance has been experimentally tested by a specially designed, highly transient test cycle.
Technical Paper

Development, Validation and ECM Embedment of a Physics-Based SCR on Filter Model

2016-09-27
2016-01-8075
SCR on Filter (SCRoF) is an efficient and compact NOX and PM reduction technology already used in series production for light-duty applications. The technology is now finding its way into the medium duty and heavy duty market. One of the key challenges for successful application is the robustness to real world variations. The solution to this challenge can be found by using model-based control algorithms, utilizing state estimation by physics-based catalyst models. This paper focuses on the development, validation and real time implementation of a physics-based control oriented SCRoF model. An overview of the developed model will be presented, together with a brief description of the model parameter identification and validation process using engine test bench measurement data. The model parameters are identified following a streamlined approach, focusing on decoupling the effects of deNOx and soot phenomena.
Technical Paper

ES2 Neck Injury Assessment Reference Values for Lateral Loading in Side Facing Seats

2009-11-02
2009-22-0015
Injury assessment reference values (IARV) predicting neck injuries are currently not available for side facing seated aircraft passengers in crash conditions. The aircraft impact scenario results in inertial loading of the head and neck, a condition known to be inherently different from common automotive side impact conditions as crash pulse and seating configurations are different. The objective of this study is to develop these IARV for the European Side Impact Dummy-2 (ES-2) previously selected by the US-FAA as the most suitable ATD for evaluating side facing aircraft seats. The development of the IARV is an extended analysis of previously published PMHS neck loads by identifying the most likely injury scenarios, comparing head-neck kinematics and neck loads of the ES2 versus PMHS, and development of injury risk curves for the ES2. The ES2 showed a similar kinematic response as the PMHS, particularly during the loading phase.
Technical Paper

Engine Dynamometer and Vehicle Performance of a Urea SCR-System for Heavy-Duty Truck Engines

2002-03-04
2002-01-0286
The application of SCR deNOx aftertreatment was studied on two about 12 liter class heavy-duty diesel engines within a consortium project. Basically, the system consists of a dosage system for aqueous urea injection and a vanadia based SCR catalyst, without an upstream or downstream oxidation catalyst. The urea injection system for a DAF and a Renault V.I. (Véhicules Industriels) diesel engine was calibrated on the engine test bench taking into account dynamic effects of the catalyst. For both engine applications NOx reduction was 81% to 84% over the ESC and 72% over the ETC. CO emission increased up to 27%. PM emission is reduced by 4 to 23% and HC emission is reduced by more than 80%. These results are achieved with standard diesel fuel with about 350 ppm sulfur. The test engines and SCR deNOx systems were built into a DAF FT95 truck and a Renault V.I. Magnum truck.
Technical Paper

Evaluation of Accident Parameters in a Numerical Fleet for Assessing Compatibility

2005-04-11
2005-01-0707
On behalf of NHTSA, the European commission and the Dutch Ministry of Traffic and Transport, the Safety department of TNO Automotive is performing numerical fleet studies using multi-body vehicle models. Currently nine vehicle models are available, each of a different vehicle class, two vehicle models with a modified front-structure. The aim is to develop strategies for evaluation of front-end structures minimizing the total harm in car-to-car crashes on a fleet-wide basis in different accident scenarios. For these studies multi-body models were constructed from existing finite element models. Front-end structure and passenger cell were modeled in detail to provide realistic deformation modes. Furthermore dummies, airbags, belts and main interior parts like dashboard and steering wheel were included. To qualify the performance of the multi-body vehicle models for crashworthiness in an entire fleet, a study on offset frontal angled impacts was performed.
Technical Paper

Experimental Demonstration of a Model-Based Control Design and Calibration Method for Cost Optimal Euro-VI Engine-Aftertreatment Operation

2013-04-08
2013-01-1061
This paper presents a model-based control and calibration design method for online cost-based optimization of engine-aftertreatment operation under all operating conditions. The so-called Integrated Emission Management (IEM) strategy online minimizes the fuel and AbBlue consumption. Based on the actual state of engine and aftertreatment systems, optimal air management settings are determined for EGR-SCR balancing. Following a model-based approach, the strategy allows for a systematic control design and calibration procedure for engine and aftertreatment systems. The potential of this time efficient method is demonstrated by experiments for a heavy-duty Euro-VI engine. The Integrated Emission Management strategy is developed and calibrated offline over a cold and hot World Harmonized Transient Cycle (WHTC) for the set emission targets. The total IEM development and calibration process takes approximately 20 weeks from model identification to the acceptance tests.
Technical Paper

Is Closed-Loop SCR Control Required to Meet Future Emission Targets?

2007-04-16
2007-01-1574
To meet 2010 emission targets, optimal SCR system performance is required. In addition, attention has to be paid to in-use compliance requirements. Closed-loop control seems an attractive option to meet the formulated goals. This study deals with the potential and limitations of closed-loop SCR control. High NOx conversion in combination with acceptable NH3 slip can be realized with an open-loop control strategy. However, closed-loop control is needed to make the SCR system robust for urea dosage inaccuracy, catalyst ageing and NOx engine-out variations. Then, the system meets conformity of production and in-use compliance norms. To demonstrate the potential of closed-loop SCR control, a NOx sensor based control strategy with cross-sensitivity compensation is compared with an adaptive surface coverage/NH3 slip control strategy and an open-loop strategy. The adaptive surface coverage/NH3 slip control strategy shows best performance over simulated ESC and ETC cycles.
Technical Paper

Laboratory Experience with the IR-TRACC Chest Deflection Transducer

2002-03-04
2002-01-0188
In 1998, Rouhana et al. described development of a new device, called the IR-TRACC (InfraRed - Telescoping Rod for Assessment of Chest Compression). In its original concept, the IR-TRACC uses two infrared LEDs inside of a telescoping rod to measure deflection. One LED serves as a light transmitter and the other as a light receiver. The output from the receiver LED is converted to a linear function of chest compression using an analog circuit. Tests have been performed with IR-TRACC units at various labs around the world since 1998. A first-generation IR-TRACC system was retrofit into a Q3 dummy by TNO. Similarly, a mid sized male Hybrid III dummy thorax and a small female Hybrid III dummy thorax have been designed by First Technology Safety Systems (FTSS) such that each contains 4 second-generation IR-TRACC units. The second-generation IR-TRACC is the result of continued development by FTSS, especially in the areas of the analysis circuit, manufacturing and calibration methods.
X