Refine Your Search

Topic

Author

Search Results

Technical Paper

A Model Based Definition of a Reference CO2 Emissions Value for Passenger Cars under Real World Conditions

2018-05-30
2018-37-0031
With the adoption of the Worldwide harmonized Light Vehicles Test Procedure (WLTP) and the Real Driving Emissions (RDE) regulations for testing and monitoring the vehicle pollutant emissions, as well as CO2 and fuel consumption, the gap between real world and type approval performances is expected to decrease to a large extent. With respect to CO2, however, WLTP is not expected to fully eliminate the reported 40% discrepancy between real world and type approval values. This is mainly attributed to the fact that laboratory tests take place under average controlled conditions that do not fully replicate the environmental and traffic conditions experienced over daily driving across Europe. In addition, any uncertainties of a pre-defined test protocol and the vehicle operation can be optimized to lower the CO2 emissions of the type approval test. Such issues can be minimized in principle with the adoption of a real-world test for fuel consumption.
Technical Paper

A Novel Start Algorithm for CNG Engines Using Ion Sense Technology

2000-10-16
2000-01-2800
This paper presents a start algorithm that is able to control the air/fuel ratio (AFR) during the cranking phase and immediately hereafter, where the ordinary λ-control is not yet enabled. The control is based on the ion sense principle, which means that a current through the spark plug is measured directly after the spark has disappeared. This current is a measure for the temperature and therefore of the combustion in the cylinder. This is an excellent way to start a CNG (Compressed Natural Gas) engine with unknown gas qualities. A typical example of application is when the vehicle is almost out of fuel and is refueled at a motel stop. The small amount of old fuel that is left in the system will mix with the new fuel resulting in an unknown fuel quality. The control system shall then be able to start the engine directly or after an accommodation over night. During the last condition, the oxygen sensor is still cold and thus not able to correct for fuel quality changes.
Technical Paper

A Seat Sensitivity Study on Vertical Vibrations and Seat Pressure Distributions using Numerical Models

2004-06-15
2004-01-2142
The introduction of a new comfortable car seat or interior is a time consuming and costly process for car and seat manufacturers. The application of numerical models of human and seat could facilitate this process. Vertical vibrations and seat pressure distributions are two objective parameters that have been related to the subjective feeling of (dis)comfort that can be predicted by numerical tools. In this paper, human models suitable for prediction of human behaviour in vertical vibrations and seat pressure distributions are applied in a seat sensitivity study. The objective of this paper is to evaluate the applicability of the human models as design tools for car and seat developers in an early stage of the design process. The sensitivity of the output of the models for variations in seat characteristics for seat developers in the design process of a new comfortable car seat has been studied.
Technical Paper

A Stochastic Virtual Testing Approach in Vehicle Passive Safety Design: Effect of Scatter on Injury Response

2005-04-11
2005-01-1763
Virtual testing has grown to be an efficient tool in vehicle passive safety design. Most simulations currently are deterministic. Since the responses observed in real-life and standardized tests are greatly affected by scatter, a stochastic approach should be adopted in order to improve the predictability of the numerical responses with respect to the experimental data. In addition, an objective judgement of the performance of numerical models with respect to experimental data is necessary in order to improve the reliability of virtual testing. In the European VITES & ADVANCE project the software tool Adviser was developed in order to fulfil these two requirements. With Adviser, stochastic simulations can be performed and the quality of the numerical responses with respect to the experimental can be objectively rated using pre-defined and user-defined objective correlation criteria. The software Adviser was used to develop a stochastic HybridIII 50th% Madymo numerical model.
Technical Paper

Advances in numerical modelling of crash dummies

2001-06-04
2001-06-0007
Nowadays virtual testing and prototyping are generally accepted methods in crash safety research and design studies. Validated numerical crash dummy models are necessary tools in these methods. Computer models need to be robust, accurate and CPU efficient, where the balance between accuracy and efficiency is depending on the nature of the study performed. This paper presents the application of advanced multibody-modelling techniques, in order to generate crash dummy models that are accurate as well as CPU efficient. Two techniques, deformable body modelling and arbitrary surface modelling, are combined. Their application is presented by means of an example model: the Hybrid III 50th percentile thorax. The method for generating the model is explained, after which the accuracy and efficiency of the model is illustrated by presenting some simulation results.
Journal Article

Ammonia Sensor for Closed-Loop SCR Control

2008-04-14
2008-01-0919
Selective Catalytic Reduction (SCR) is the dominant solution for meeting future NOx reduction regulations for heavy-duty diesel powertrains. SCR systems benefit from closed-loop control if an appropriate exhaust gas sensor were available. An ammonia sensor has recently been developed for use as a feedback element in closed-loop control of urea dosing in a diesel SCR aftertreatment system. Closed-loop control of SCR dosing enables the SCR system to be robust against disturbances and to meet conformity of production (COP) and in-use compliance norms. The ammonia sensor is based on a non-equilibrium electrochemical principle and outputs emf signals. The sensor performs well when tested in a diesel engine exhaust environment and has minimum cross interference with CO, HC, NO, NO2, SO2, H2O and O2. Previous work, done in a simulation environment, demonstrated that an ammonia sensor provides the optimal feedback for urea dosing control algorithms in closed-loop SCR systems.
Technical Paper

Analysis of Transition from HCCI to CI via PPC with Low Octane Gasoline Fuels Using Optical Diagnostics and Soot Particle Analysis

2017-10-08
2017-01-2403
In-cylinder visualization, combustion stratification, and engine-out particulate matter (PM) emissions were investigated in an optical engine fueled with Haltermann straight-run naphtha fuel and corresponding surrogate fuel. The combustion mode was transited from homogeneous charge compression ignition (HCCI) to conventional compression ignition (CI) via partially premixed combustion (PPC). Single injection strategy with the change of start of injection (SOI) from early to late injections was employed. The high-speed color camera was used to capture the in-cylinder combustion images. The combustion stratification was analyzed based on the natural luminosity of the combustion images. The regulated emission of unburned hydrocarbon (UHC), carbon monoxide (CO) and nitrogen oxides (NOX) were measured to evaluate the combustion efficiency together with the in-cylinder rate of heat release.
Technical Paper

Appliance of High EGR Rates With a Short and Long Route EGR System on a Heavy Duty Diesel Engine

2007-04-16
2007-01-0906
The goal of this work was to investigate the possibilities of applying high EGR rates with low NOx and PM emission levels on a two-stage turbocharged 12 liter heavy duty diesel engine. The EGR is applied by using a long and short route EGR system. For the ESC operating points A25 and C100 EGR is applied, such that the NOx emission is 0.5 g/kWh. Lowest PM level and BSFC are achieved when long route EGR is applied in A25 and short route is applied in C100. Increasing the fuel line pressure is an effective way to reduce PM at high EGR rate engine running conditions. At a fuel line pressure of 2400 bar PM emission are 0.06 g/kWh for A25 and 0.54 g/kWh for C100. At C100 the PM reduction coincides with also a significant fuel consumption improvement. Retarding the injection timing at C100 can improve the PM emission further to a level of 0.13 g/kWh at the expense of an increase in BSFC.
Technical Paper

Assessment of the Effect of Low Cetane Number Fuels on a Light Duty CI Engine: Preliminary Experimental Characterization in PCCI Operating Condition

2011-09-11
2011-24-0053
The goal of this paper is to acquire insight into the influence of cetane number (CN) and fuel oxygen on overall engine performance in the Premixed Charge Compression Ignition (PCCI) combustion mode. From literature, it is known that low reactive (i.e., low CN) fuels increase the ignition delay (ID) and therefore the degree of mixing prior to auto-ignition. With respect to fuel oxygen, it is known that this has a favorable impact on soot emissions by means of carbon sequestration. This makes the use of low CN oxygen fuels an interesting route to improve the applicability of PCCI combustion in diesel engines. In earlier studies, performed on a heavy-duty engine, cyclic oxygenates were found to consistently outperform their straight and branched counterparts with respect to curbing soot. This was attributed to a considerably lower CN.
Journal Article

Automated Model Fit Method for Diesel Engine Control Development

2014-04-01
2014-01-1153
This paper presents an automated fit for a control-oriented physics-based diesel engine combustion model. This method is based on the combination of a dedicated measurement procedure and structured approach to fit the required combustion model parameters. Only a data set is required that is considered to be standard for engine testing. The potential of the automated fit tool is demonstrated for two different heavy-duty diesel engines. This demonstrates that the combustion model and model fit methodology is not engine specific. Comparison of model and experimental results shows accurate prediction of in-cylinder peak pressure, IMEP, CA10, and CA50 over a wide operating range. This makes the model suitable for closed-loop combustion control development. However, NO emission prediction has to be improved.
Technical Paper

Automated Model Fit Tool for SCR Control and OBD Development

2009-04-20
2009-01-1285
Reaching EUROVI Heavy Duty emission limits will result in more testing time for developing control and OBD algorithms than to reach EUROV emissions. It is likely that these algorithms have to be adapted for a WHTC (World Heavy Duty Transient Cycle) for EUROVI. This cycle when started cold can only be performed a limited times a day on the engine testbench, because of the cooling down time. The development time and cost increases to reach EUROVI emission levels. Accurate simulation tools can reduce the time and costs by reducing the amount of tests required on the testbench. In order to use simulation tools to develop pre calibrations, the models must be fitted and validated. This paper will focus on the fit process of an SCR (Selective Catalytic Reduction) model. A unique test procedure has been developed to characterize an SCR catalyst using an engine testbench in ±2 days. This data is used in an automatic SCR fit tool to obtain the model parameters in a few days.
Technical Paper

CO2 Neutral Heavy-Duty Engine Concept with RCCI Combustion Using Seaweed-based Fuels

2020-04-14
2020-01-0808
This paper focusses on the application of bioalcohols (ethanol and butanol) derived from seaweed in Heavy-Duty (HD) Compression Ignition (CI) combustion engines. Seaweed-based fuels do not claim land and are not in competition with the food chain. Currently, the application of high octane bioalcohols is limited to Spark Ignition (SI) engines. The Reactivity Controlled Compression Ignition (RCCI) combustion concept allows the use of these low carbon fuels in CI engines which have higher efficiencies associated with them than SI engines. This contributes to the reduction of tailpipe CO2 emissions as required by (future) legislation and reducing fuel consumption, i.e. Total-Cost-of-Ownership (TCO). Furthermore, it opens the HD transport market for these low carbon bioalcohol fuels from a novel sustainable biomass source. In this paper, both the production of seaweed-based fuels and the application of these fuels in CI engines is discussed.
Technical Paper

Combustion Homogeneity and Emission Analysis during the Transition from CI to HCCI for FACE I Gasoline

2017-10-08
2017-01-2263
Low temperature combustion concepts are studied recently to simultaneously reduce NOX and soot emissions. Optical studies are performed to study gasoline PPC in CI engines to investigate in-cylinder combustion and stratification. It is imperative to perform emission measurements and interpret the results with combustion images. In this work, we attempt to investigate this during the transition from CI to HCCI mode for FACE I gasoline (RON = 70) and its surrogate, PRF70. The experiments are performed in a single cylinder optical engine that runs at a speed of 1200 rpm. Considering the safety of engine, testing was done at lower IMEP (3 bar) and combustion is visualized using a high-speed camera through a window in the bottom of the bowl. From the engine experiments, it is clear that intake air temperature requirement is different at various combustion modes to maintain the same combustion phasing.
Technical Paper

Compression Ignition of Light Naphtha and Its Multicomponent Surrogate under Partially Premixed Conditions

2017-09-04
2017-24-0078
Light naphtha is the light distillate from crude oil and can be used in compression ignition (CI) engines; its low boiling point and octane rating (RON = 64.5) enable adequate premixing. This study investigates the combustion characteristics of light naphtha (LN) and its multicomponent surrogate under various start of injection (SOI) conditions. LN and a five-component surrogate for LN, comprised of 43% n-pentane, 12% n-heptane, 10% 2-methylhexane, 25% iso-pentane and 10% cyclo-pentane, has been tested in a single cylinder optical diesel engine. The transition in combustion homogeneity from CI combustion to homogenized charge compression ignition (HCCI) combustion was then compared between LN and its surrogate. The engine experimental results showed good agreement in combustion phasing, ignition delay, start of combustion, in-cylinder pressure and rate of heat release between LN and its surrogate.
Technical Paper

Control Oriented Engine Model Development for Model-Based PPC Control

2022-03-29
2022-01-0480
A model-based control approach is proposed to give proper reference for the feed-forward combustion control of Partially Pre-mixed Combustion (PPC) engines. The current study presents a simplified first principal model, which has been developed to provide a base estimation of the ignition properties. This model is used to describe the behavior of a single-cylinder heavy-duty diesel engine fueled with a mix of bio-butanol and n-heptane (80vol% bio-butanol and 20 vol% n-heptane). The model has been validated at 8 bar gross Indicated Mean Effective Pressure (gIMEP) in PPC mode. Inlet temperature and pressure have been varied to test the model capabilities. First the experiments were conducted to generate reference points with BH80 under PPC conditions. And then CFD simulations were conducted to give initial parameter set up, e.g. fuel distribution, zone dividing, for the multi-zone model.
Technical Paper

Control-Oriented Identification of an Electromechanically Actuated Metal V-belt CVT

2004-08-23
2004-40-0013
For analysis, control design and testing of an electromechanically actuated metal V-belt type CVT, a simulation model is built. Due to its complexity and nonlinear behavior, this model is not suitable for control design. To use control design techniques like H1 or μ-synthesis, linear transfer functions from all inputs to all outputs must be known. Using approximate realization techniques, step responses simulated with the model are analyzed. In this way, a linearized state-space representation of the system is obtained. The transfer functions show resonances around 8−10 [Hz], depending on the CVT ratio. Using MIMO-control, closed loop bandwidths that could be obtained are up to 10 [Hz] for ratio control and 15 [Hz] for slip control.
Technical Paper

Coordinated Air-Fuel Path Control in a Diesel-E85 RCCI Engine

2019-04-02
2019-01-1175
Reactivity Controlled Compression Ignition (RCCI) combines very high thermal efficiencies with ultra-low engine out NOx and PM emissions. Moreover, it enables the use of a wide range of fuels. As this pre-mixed combustion concept relies on controlled auto-ignition, closed-loop combustion control is essential to guarantee safe and stable operation under varying operating conditions. This work presents a coordinated air-fuel path controller for RCCI operation in a multi-cylinder heavy-duty engine. This is an essential step towards real-world application. Up to now, transient RCCI studies focused on individual cylinder control of the fuel path only. A systematic, model-based approach is followed to design a multivariable RCCI controller. Using the Frequency Response Function (FRF) method, linear models are identified for the air path and for the combustion process in the individual cylinders.
Journal Article

Cost and Fuel Efficient SCR-only Solution for Post-2010 HD Emission Standards

2009-04-20
2009-01-0915
A promising SCR-only solution is presented to meet post-2010 NOx emission targets for heavy duty applications. The proposed concept is based on an engine from a EURO IV SCR application, which is considered optimal with respect to fuel economy and costs. The addition of advanced SCR after treatment comprising a standard and a close-coupled SCR catalyst offers a feasible emission solution, especially suited for EURO VI. In this paper, results of a simulation study are presented. This study concentrates on optimizing SCR deNOx performance. Simulation results of cold start FTP and WHTC test cycles are presented to demonstrate the potential of the close-coupled SCR concept. Comparison with measured engine out emissions of an EGR engine shows that a close-coupled SCR catalyst potentially has NOx reduction performance as good as EGR. Practical issues regarding the use of an SCR catalyst in close-coupled position will be addressed, as well as engine and exhaust layout.
Technical Paper

Cylinder Pressure-Based Control in Heavy-Duty EGR Diesel Engines Using a Virtual Heat Release and Emission Sensor

2010-04-12
2010-01-0564
This paper presents a cylinder pressure-based control (CPBC) system for conventional diesel combustion with high EGR levels. Besides the commonly applied heat release estimation, the CPBC system is extended with a new virtual NOx and PM sensor. Using available cylinder pressure information, these emissions are estimated using a physically based combustion model. This opens the route to advanced On-Board Diagnostics and to optimized fuel consumption and emissions during all operating conditions. The potential of closed-loop CA50 and IMEP control is demonstrated on a multi-cylinder heavy-duty EGR engine. For uncalibrated injectors and fuel variations, the combustion control system makes the engine performance robust for the applied variations and reduces the need for a time-consuming calibration process. Cylinder balancing is shown to enable auto-calibration of fuel injectors and to enhance fuel flexibility.
Technical Paper

DAF Euro-4 Heavy Duty Diesel Engine with TNO EGR system and CRT Particulates Filter

2001-05-07
2001-01-1947
This paper reports on a study of the TNO venturi EGR system and the Johnson Matthey CRT particulates trap on a DAF 355 kW engine. The results obtained indicate that this EGR-CRT combination is an effective means to achieve EURO-4 emission level, while maintaining good fuel economy. EGR strategy, injection timing and air-fuel ratio were optimised in such a way that good regeneration conditions were obtained across most of the engine operating map. Also transient EGR control is optimised to combine low NOx emission during the ETC with good driveability and good engine out particulates emission. The size of the oxidation catalyst in the CRT was investigated. It appeared that the larger oxidation catalyst showed a better regeneration performance during a low temperature duty-cycle. Negative aspects of a larger oxidation catalyst are increased costs and increased NO2 emission (because of the catalyst ability to oxidise more NO into NO2).
X