Refine Your Search

Topic

Author

Search Results

Technical Paper

3D Simulation Methodology to Predict Passenger Thermal Comfort Inside a Cabin

2021-09-15
2021-28-0132
The vehicle Heating, Ventilation and Air conditioning (HVAC) system is designed to meet both the safety and thermal comfort requirements of the passengers inside the cabin. The thermal comfort requirement, however, is highly subjective and is usually met objectively by carrying out time dependent mapping of parameters like the velocity and temperature at various in-cabin locations. These target parameters are simulated for the vehicle interior for a case of hot soaking and its subsequent cool-down to test the efficacy of the AC system. Typically, AC performance is judged by air temperature at passenger locations, thermal comfort estimation along with time to reach comfortable condition for human. Simulating long transient vehicle cabin for thermal comfort evaluation is computationally expensive and involves complex cabin material modelling.
Technical Paper

A DFSS Approach to Design Cooling System of Small Passenger Car Having Rear Engine and Front Mounted Radiator

2016-04-05
2016-01-0657
DFSS is a disciplined problem prevention approach which helps in achieving the most optimum design solution and provides improved and cost effective quality products. This paper presents the implementation of DFSS method to design a distinctive cooling system where engine is mounted in the rear and radiator is mounted in the front of the car. In automobile design, a rear-engine design layout places the engine at the rear of the vehicle. This layout is mainly found in small, entry level cars and light commercial vehicles chosen for three reasons - packaging, traction, and ease of manufacturing. In conventional Passenger cars, a radiator is located close to the engine for simple packaging and efficient thermal management. This paper is about designing a distinctive cooling system of a car having rear mounted engine and front mounted radiator.
Technical Paper

A Feedback and Feedforward Control Algorithm for a Manual Transmission Vehicle Simulation Model

2018-04-03
2018-01-1356
Authors were challenged with a task of developing a full vehicle simulation model, with a target to simulate the electrical system performance and perform digital tests like Battery Charge Balance, in addition to the fuel efficiency estimation. A vehicle is a complicated problem or domain to model, due to the complexities of subsystems. Even more difficult task is to have a control algorithm which controls the vehicle model with the required control signals to follow the test specification. Particularly, simulating the control of a vehicle with a manual transmission is complicated due to many associated control signals (Throttle, Brake and Clutch) and interruptions like gear changes. In this paper, the development of a full vehicle model aimed at the assessment of electrical system performance of the vehicle is discussed in brief.
Technical Paper

A Low Cost Euro-III Development Strategy for 4 L Engine for Commercial Vehicle Application

2006-10-16
2006-01-3384
Reduction of NOx (Oxides of Nitrogen) and particulates from engine exhaust is one of the prime considerations in current research and development in automotive industry. The present paper describes the combustion optimization done on a four cylinder, 4 liter DI diesel engine to meet stringent Euro-III emission norms. The engine FIE (Fuel Injection Equipment) and injector geometry was optimized for performance and emission. Smoke measurements were considered as indicative of soot, to predict particulate emissions. This was done to simplify the overall process and save development time. It was concluded that by combining the flexibility of electronically controlled fuel injection begin, with improved nozzle technologies, with higher spray velocities and spray penetration, a considerable reduction in NOx and particulate emissions can be achieved. This can serve as a low cost solution, without any exhaust after-treatment systems.
Technical Paper

A Methodology to Predict Mobile Air-Conditioning System (MAC) Performance for Low GWP Drop-In Refrigerant Using 1D CAE Simulation Tool

2024-01-16
2024-26-0308
In developing nations, most passenger vehicles are equipped with mobile air conditioning (MAC) systems that work on Hydro Fluoro Carbons (HFC) based refrigerants. These refrigerants have a high global warming potential (GWP) and hence adversely affect the environment. According to the Kigali amendment to Montreal Protocol, Article-5 Group-2 countries including India must start phasing down HFCs from 2028 and replace them with low Global Warming Potential (GWP) refrigerants. One such class of low GWP refrigerant is Hydro Fluoro Olefins (HFO) In order to replace HFCs with HFOs in existing MAC systems, the various system performance parameters with the new refrigerant are required to be evaluated. Performance evaluation of MAC system is rendered quicker and cost-effective by deploying a digital simulation tool. There is good correlation and confidence established for MAC performance prediction with HFCs through 1D CAE.
Technical Paper

A Study on Effect of Regenerative Braking on Vehicle Range and Axle Life

2024-01-16
2024-26-0240
This paper aims at analysing the effect of regeneration braking on the amount of energy harnessed during vehicle braking, coasting and its effect on the drive train components like gear, crown wheel pinion, spider gear & bearing etc. Regenerative braking systems (RBS) is an effective method of recovering the kinetic energy of the vehicle during braking condition and using this to recharge the batteries. In Battery Electric Vehicles (BEV), this harnessed energy is used for controlled charging of the high voltage batteries which will help in increasing the vehicle range eventually. Depending on the type of the powertrain architecture, components between motor output to the wheels will vary, i.e., in an e-axle, motor is coupled with a gear box which will be connected with differential and the wheels. Whereas in case of a central drive architecture, motor is coupled with gearbox which is connected with a propeller shaft and then the differential and to the wheels.
Technical Paper

AMT Reverse Gear Engagement Dynamics and Control

2019-01-09
2019-26-0046
Now a day’s automated manual transmissions (AMT) are getting popular because of hassle-free gear shifting and improved fuel economy. OEMs are converting their existing manual gearbox to AMT gearbox with solution like hydraulic or electric AMT kit that replaces the manual shift mechanism to automated actuators. Generally, in manual gearbox, the operational principal of reverse gear is sliding mesh. Due to sliding mesh gear arrangement, it can create interruption for gearshift while controlling shift actuators. In this paper, reverse gear shift arrangement and its operational dynamics at different operating condition has been studied and analyzed in detail. Based on status of vehicle, to ease the gearshift, engagement flow process proposed. The control methods that increases probability of smooth and easier shifting in all operating condition discussed in detail. The developed control algorithm discussed along with its implementation on real vehicle and results.
Technical Paper

Adhesive Failure Prediction in Crash Simulations

2019-01-09
2019-26-0297
Structural adhesive is a good alternative to provide required strength at joinery of similar and dissimilar materials. Adhesive joinery plays a critical role to maintain structural integrity during vehicle crash scenario. Robust adhesive failure definitions are critical for accurate predictions of structural performance in crash Computer Aided Engineering (CAE) simulations. In this paper, structural adhesive material characterization challenges like comprehensive In-house testing and CAE correlation aspects are discussed. Considering the crash loading complexity, test plan is devised for identification of strength and failure characteristics at 0°, 45°, 75°, 90°, and Peel loading conditions. Coupon level test samples were prepared with high temperature curing of structural adhesive along with metal panels. Test fixtures were prepared to carryout testing using Instron VHS machine under quasi-static and dynamic loading.
Technical Paper

Advanced Material Modelling for Failure Prediction of ISOFIX Anchorages

2024-01-16
2024-26-0300
ISOFIX anchorage plays a critical role in restraining child occupants during crashes. Effective design of ISOFIX anchorages is essential for achieving controlled child occupant kinematics. CAE simulations are extensively used for the development of ISOFIX anchorages. Comprehensive material characterization of ISOFIX wires play a vital role for achieving desired prediction accuracy. This paper covers the detailed process of ISOFIX material characterization for material failure prediction. ISOFIX wires are case hardened to exhibit required strength characteristics. Due to its material characteristics, the conventional material models don't give desired prediction accuracy for failure prediction. Therefore, advanced material models are developed in LS Dyna environment, which can accurately predict plastic and fracture behavior of ISOFIX wires.
Technical Paper

An Engine Stop Start System with Driver Behavior Learning and Adaption for Improving the User Experience

2018-04-03
2018-01-0609
Engine Stop/Start System (ESS) promises to reduce greenhouse emissions and improve fuel economy of vehicles. Previous work of the Authors was concentrated on bridging the gap of improvement in fuel economy promised by ESS under standard laboratory conditions and actual driving conditions. Findings from the practical studies lead to a conclusion that ESS is not so popular among the customers, due to the complexities of the system operation and poor integration of the system design with the driver behavior. In addition, due to various functional safety requirements, and traffic conditions, actual benefits of ESS are reduced. A modified control algorithm was proposed and proven for the local driving conditions in India. The ways in which a given driver behaves on the controls of the vehicles like Clutch and Brake Pedals, Gear Shift Lever were not uniform across the demography of study and varied significantly.
Journal Article

An Intelligent Alternator Control Mechanism for Energy Recuperation and Fuel Efficiency Improvement

2013-04-08
2013-01-1750
With the current state of ever rising fuel prices and unavailability of affordable alternate technologies, significant research and development efforts have been invested in recent times towards improving fuel efficiency of vehicles powered with conventional internal combustion engines. To achieve this, a varied approach has been adopted by researchers to cover the entire energy chain including fuel quality, combustion quality, power generation efficiency, down-sizing, power consumption efficiency, etc. Apart from energy generation, distribution and consumption, another domain that has been subjected to significant scrutiny is energy recuperation or recovery. A moving vehicle and a running engine provide a number of opportunities for useful back-recovery and storage of energy. The most significant sources for recuperation are the kinetic energy of the moving vehicle or running engine and to a lesser extent the thermal energy from medium such as exhaust gas.
Technical Paper

Application of CFD Methodology to Reduce the Pressure Drop and Water Entry in the Air Intake System of Turbocharged Engine

2008-04-14
2008-01-1172
When an automobile negotiates a flooded region, water is splashed due to the rotational motion of the wheels. This water enters the air intake system of the turbocharged intercooled engine along with air and can pass through the turbocharger, intercooler and enter the engine. As water is an incompressible fluid, the piston cannot compress water inside the cylinder which leads to connecting rod bending and severe engine damage. This paper explains how the same has been resolved using CFD methodology and proposes the re-designed model of mud cover as a solution to this problem. The entire process has been streamlined and major time and cost reduction achieved by using simulation for optimization. The simulated results have been validated by extensive trials for correlation and outdoor tests for durability. Same analysis technique is used as a template to modify the air intake system.
Technical Paper

Application of Hydraulically Controlled Rear Mount to Mitigate Key on/off Requirement of Passenger Car

2024-01-16
2024-26-0210
Key on/off (KOKO) Vibration plays a vital role in the quality of NVH (Noise Vibration and Harshness) on a vehicle. A good KOKO experience on the vehicle is desirable for every customer. The vibration transfer to the vehicle can be refined either by reducing the source vibrations or improving isolation efficiency. For the engine mounting system of passenger cars, the mounts are an isolating element between the powertrain and receiver. Various noise, Vibration, and harshness criteria must be fulfilled by mounting system performance like driver seat rail vibration (DSR), tip-in/tip-out, judder performance, DSR at idle and Key on/off Vibration. Out of these requirements, in the paper, the investigation is done on KOKO improvement without affecting other NVH parameters related to mount performance. Higher damping is required to isolate Vibration generated during the Key-on event, and lower damping is required during the idle condition of the vehicle.
Technical Paper

Application of a Pre-Turbocharger Catalyst (PTC) on an Indian Multi Utility Diesel Vehicle for Meeting BS IV

2011-01-19
2011-26-0024
Diesel engines tend to operate on lower exhaust temperatures, compared to their gasoline counterparts. Exhaust emission control becomes a significant issue at these lower temperatures, as any catalytic converter needs certain light off temperature to commence functioning. The trend so far has been to move the catalytic converters closer to the exhaust manifold, in order to get the benefit of higher temperatures - but most of the applications are limited to the location available after the turbo chargers. This is due the fact that very minute and efficient catalyst is required, if it has to be placed before the turbo charger. This catalyst also needs to be extremely durable to take care of high exotherms which occur within the catalysts and also to prevent any possible damage to the turbo chargers.
Technical Paper

Augmenting Light Weighting Horizon in Automotive

2014-04-28
2014-28-0023
Better ride and comfort, enhanced safety, reliability and durability, lower running cost as well as cost of ownership continue to be challenges for automotive OEMs. Higher fuel efficiency is considered as USP not only for lower running cost but also is hygiene factor from sustainability point of view. This has necessitated the need for Augmenting Light weighting horizon in automotive OEMs. Augmenting this leads to invention of innovative materials and processes for emerging cost competitive market. This paper focuses on technology efforts towards augmenting light weighting Horizon in Automotive. Light weighting concepts being explored by OEMs with the help of automotive component manufacturers from Powertrain - Engines & Transmission, Chassis and Suspension are discussed.
Journal Article

Body Induced Boom Noise Control by Hybrid Integrated Approach for a Passenger Car

2013-05-13
2013-01-1920
Vehicle incab booming perception, a low frequency response of the structure to the various excitations presents a challenging task for the NVH engineers. The excitation to the structure causing boom can either be power train induced, depending upon the number of cylinders or the road inputs, while transfer paths for the excitation is mainly through the power train mounts or the suspension attachments to the body. The body responds to those input excitations by virtue of the dynamic behavior mainly governed by its modal characteristics. This paper explains in detail an integrated approach, of both experimental and numerical techniques devised to investigate the mechanism for boom noise generation. It is therefore important, to understand the modal behavior of the structure. The modal characteristics from the structural modal test enable to locate the natural frequencies and mode shapes of the body, which are likely to get excited due to the operating excitations.
Technical Paper

CAE Based Benchmarking of Shaft Deflection for Transmission Gear Rattle Noise

2024-01-16
2024-26-0245
Vehicle transmission gear rattle is one of the most critical NVH irritants for refined vehicles. It is perceived more dominantly in lower gears of vehicle running. It depends on various design parameters like engine input torque amplitude & fluctuations, driveline torsional vibrations, gear micro & macro geometry, shaft flexibility, etc. Establishing exact contribution of each of these parameters to transmission rattle, thru experimental or simulation technique, is very challenging. Current paper explains the NVH CAE benchmark approach deployed to understand difference in rattle behavior of two transmission designs. Paper focuses on simulation of gear impact power and its sensitivity to transmission shaft deflections.
Technical Paper

Characterization of PU Foam for High Temperature Applications in Automobiles

2014-04-01
2014-01-1035
Due to continuous demands from OEM's to reduce weight and make more compact vehicles, high heat generation from vehicle has become common phenomenon. Thermal insulation is a need of the hour to cater to such demands. The temperature rise is more critical around engine areas. OEM's use many design solutions to cater to such heat build up's. One of the design solutions includes use of thermally insulating materials e.g. Foams, insulating fabrics etc… First section of this paper deals with comparative study of polyurethane (PU) soft foam and rigid skin polyurethane foam. To define the base line, the samples were subjected to various tests to determine physical, thermal and chemical properties. Also both the types of foams were subjected to high temperature and low temperature heat ageing. From the experiments, it was observed that soft PU foam provides better re-bounce property than rigid skin PU foam.
Technical Paper

Clutch Hysteresis Maximization for Elimination of Gear Rattle in a Passenger Bus

2013-01-09
2013-26-0100
The acceptable noise and vibration performance is one of the most important requirements in a passenger bus as it is intended for widest spectrum of passengers covering all age groups. Gear rattle, being one of the critical factors for NVH and durability, plays a vital role in passenger comfort inside vehicle. The phenomenon of gear rattle happens due to irregularity in engine torque, causing impacts between the teeth of unloaded gear pairs of a gearbox which produce vibrations giving rise to this unacceptable acoustic response. In depth assessment of the dynamic behavior of systems and related components required to eliminate gear rattle. During normal running conditions, abnormal in-cab noise was perceived in a bus. Initial subjective evaluation revealed that the intensity was high during acceleration and deceleration. Objective measurements and analysis of the in-cab noise and vibration measurements had indicated that the noise is mainly due to gear rattling.
Technical Paper

Combustion Mechanical Breakdown: A Comparison of the Multiple Regression Method versus the Coherence Method for a HSDI Diesel Powertrain

2011-01-19
2011-26-0035
In the automotive industry there are now several methodologies available to estimate the Combustion Mechanical Breakdown (CMB) of engine radiated noise. This paper compares the results of two different CMB analysis methodologies (multiple regression vs. coherence) performed on a HSDI diesel powertrain installed in an Engine Noise Test Cell (ENTC) and highlights the specific differences in the way each method defines combustion and mechanical noise.
X