Refine Your Search

Topic

Author

Search Results

Technical Paper

A 50cc Two-Stroke DI Compression Ignition Engine Fuelled by DME

2008-06-23
2008-01-1535
The low auto-ignition temperature, rapid evaporation and high cetane number of dimethyl ether (DME) enables the use of low-pressure direct injection in compression ignition engines, thus potentially bringing the cost of the injection system down. This in turn holds the promise of bringing CI efficiency to even the smallest engines. A 50cc crankcase scavenged two-stroke CI engine was built based on moped parts. The major alterations were a new cylinder head and a 100 bar DI system using a GDI-type injector. Power is limited by carbon monoxide emission but smoke-free operation and NOx < 200ppm is achieved at all points of operation.
Technical Paper

A New Family of Nonlinear Observers for SI Engine Air/Fuel Ratio Control

1997-02-24
970615
In general most engine models for control applications have been constructed using regressions fitting and measured engine data. Such techniques have also been used to model the dynamic performance of engines. Unfortunately regression equation models are very complex and do not show directly the physical reality from which they emerge. This has for example made it impossible to write down explicitly the dymanic equations for, for example, the air exchange process in an SI engine in any form other than as the manifold pressure state equation. In recent a publication a Mean Value Engine Model (MVEM) has been constructed for an SI engine which is physically based and which has a simple physical form which can be immediately understood and manipulated.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Technical Paper

A study on the effects of compression ratio, engine speed and equivalence ratio on HCCI combustion of DME

2007-07-23
2007-01-1860
An experimental study has been carried out on the homogeneous charge compression ignition (HCCI) combustion of Dimethyl Ether (DME). The study was performed as a parameter variation of engine speed and compression ratio on excess air ratios of approximately 2.5, 3 and 4. The compression ratio was adjusted in steps to find suitable regions of operation, and the effect of engine speed was studied at 1000, 2000 and 3000 RPM. It was found that leaner excess air ratios require higher compression ratios to achieve satisfactory combustion. Engine speed also affects operation significantly.
Technical Paper

Advanced Nonlinear Engine Idle Speed Control Systems

1994-03-01
940974
One of the most important operating modes for SI engines is in the idle speed region. This is because SI engines spend a large part of their time operating in this mode. Moreover, a large measure of operator satisfaction is dependent on an engine operating smoothly and reliably in and around idle. In particular the operator expects that the idle speed will remain constant in spite of the engine loads due to power steering pumps and air conditioning compressors. In the idle speed region an SI engine is thought to be quite nonlinear because the engine loading can be quite significant, thus forcing the engine to be driven through a reasonably large portion of its lower operating range. Many of the earlier studies of idle speed control systems have dealt with linearized models which in principle have limited validity for the problem at hand. In order to improve this situation, it is necessary to deal with the more general nonlinear control problem.
Technical Paper

Advanced Nonlinear Observer Control of SI Engines

1993-03-01
930768
In earlier work it has been shown that a nearly ideal solution to the problem of accurate estimation of the air mass flow to a central fuel injection (CFI) (or throttle body (TBI)) or EFI (or multi-point (MPI)) equipped engine is provided by using a closed loop nonlinear observer for the engine. With proper design this observer was shown to be both accurate and robust with respect to modelling end measurement errors. It is based on a Constant Gain Extended Kalman Filter (CGEKF). Since the publication of this work, another type of observer has emerged in the literature for which claims of great robustness have been made. This observer is based on new developments in the area of nonlinear control theory and is called a Sliding Mode Observer (SMO). In this paper these two types of observers are compared theoretically and experimentally on an engine mounted on a dynamometer. A very aggressive driving scenario is assumed for these tests.
Technical Paper

Avoiding Signal Aliasing in Event Based Engine Control

2000-03-06
2000-01-0268
Many modern control strategies for engine control are based on event based sampling. Operating the control strategy in the event domain makes it possible to obtain samples at specific crank shaft angles in the engine cycle, which is often desirable for certain control strategies. One of the biggest disadvantages involved with event based strategies is signal aliasing at low engine speeds or a high computational burden at higher engine speeds. This paper presents an easy solution to the aliasing problem above. If the data between the event based samples is stored using a time based strategy, it is shown here that a subsequent treatment of the sampled data as a time series together with a suitable low pass filter structure can avoid aliasing.
Technical Paper

Cylinder Pressure Data Acquisition and Heat Release Analysis on a Personal Computer

1986-02-01
860029
The availability and low price of personal computers with suitable interface equipment has made it practical to use such a system for cylinder pressure data acquisition. With this objective, procedures have been developed to measure and record cylinder pressure on an individual crank angle basis and obtain an average cylinder pressure trace using an Apple II Plus personal computer. These procedures as well as methods for checking the quality of cylinder pressure data are described. A simplified heat release analysis technique for an approximate first look at the data quality is presented. Comparisons are made between the result of this analysis, the Krieger-Borman heat release analysis which uses complete chemical equilibrium. The comparison is made to show the suitability of the simplified analysis in judging the quality of the pressure data.
Journal Article

Development and Validation of Chemical Kinetic Mechanism Reduction Scheme for Large-Scale Mechanisms

2014-10-13
2014-01-2576
This work is an extension to a previously reported work on chemical kinetic mechanism reduction scheme for large-scale mechanisms. Here, Perfectly Stirred Reactor (PSR) was added as a criterion of data source for mechanism reduction instead of using only auto-ignition condition. As a result, a reduced n-hexadecane mechanism with 79 species for diesel fuel surrogate was successfully derived from the detailed mechanism. Following that, the reduced n-hexadecane mechanism was validated under auto-ignition and PSR conditions using zero-dimensional (0-D) closed homogeneous batch reactor in CHEMKIN-PRO software. Agreement was achieved between the reduced and detailed mechanisms in ignition timing predictions and the reduced n-hexadecane mechanism was able to reproduce species concentration profiles with a maximum error of 40%. Accordingly, two-dimensional (2-D) Computational Fluid Dynamic (CFD) simulations were performed to study the spray combustion phenomena within a constant volume bomb.
Technical Paper

Dimethyl Ether (DME) - Assessment of Viscosity Using the New Volatile Fuel Viscometer (VFVM)

2001-05-07
2001-01-2013
This paper describes the development and test of a viscometer capable of handling dimethyl Ether (DME) and other volatile fuels. DME has excellent combustion characteristics in diesel engines but the injection equipment can break down prematurely due to extensive wear when handling this fuel. It was established, in earlier work, that the wear in the pumps is substantial even if the lubricity of DME is raised to a believed acceptable level using anti-wear additives. An influence of the viscosity on the wear in the pumps was suspected. The problem, up to now, was that the viscosity of DME has only been estimated or calculated but never actually measured. In the present work a volatile fuel viscometer (VFVM) was developed. It is of the capillary type and it was designed to handle DME, neat or additised. The kinematic and dynamic viscosities of pure DME were measured at 0.185 cSt and 0.122 cP at 25 °C respectively.
Technical Paper

Direct Digital Control of the Diesel Fuel Injection Process

1992-02-01
920626
The pump-pipe-injector-injection system is the most commonly used type of injection equipment for Diesel engines. In order to be compatible with digital engine control, this system needs to be modified. The resulting fuel injection system should have the following characteristics: mechanical simplicity, direct control capability and low cost. Based on these requirements, the direct digital control of the pump-pipe-injector injection system has been investigated. A new solenoid control valve has been designed to simultaneously control the injection timing, fuel quantity and hydraulic performance. The conventional jerk-pump is very much simplified. A research type control unit based on a PC has been developed. The system has the possible configuration of electronic pump-pipe-valve-injector and electronic pump-valve-pipe-injector. The system was designed and analyzed on the basis of a comprehensive mechanical - magnetic - electrical - hydraulic computer simulation of the system.
Technical Paper

Engine Operation on Dimethyl Ether in a Naturally Aspirated, Dl Diesel Engine

1997-05-01
971665
A naturally aspirated, direct injection diesel engine was modified in order to be run on dimethyl ether (DME), with a conventional pump-line-nozzle system. The effects of various modifications to engine timing and the injection system as well as EGR were experimentally determined. Compared to the original diesel engine, the NOx emissions were reduced by over 70% through the use of suitable timing, lowered injector opening pressure and EGR. Particulate emissions were very low, and represent over a 90% reduction as compared to the original diesel version. The original pump-line-nozzle injection system was found to be not well suited to DME operation, CO and HC emissions were substantially higher due to secondary injections, caused by high pressure oscillations and residual pressure with the DME.
Technical Paper

Experimental Study of Lignin Fuels for CI Engines

2024-06-12
2024-37-0022
This study explores the feasibility of using a sustainable lignin-based fuel, consisting of 44 % lignin, 50 % ethanol, and 6 % water, in conventional compression ignition (CI) marine engines. Through experimental evaluations on a modified small-bore CI engine, we identified the primary challenges associated with lignin-based fuel, including engine startup and shutdown issues due to solvent evaporation and lignin solidification inside the fuel system, and deposit formation on cylinder walls leading to piston ring seizure. To address these issues, we developed a fuel switching system transitioning from lignin-based fuel to cleaning fuel with 85 vol% of acetone, 10 vol% of water and 5 vol% of ignition improving additive, effectively preventing system clogs.
Technical Paper

Fuel Additive Effects on Particulate Emissions from a Diesel Engine

1997-02-24
970181
Studies were performed with three commonly used additive metals, cerium copper, and iron, with a conventional and a low sulfur fuel in order to investigate fuel additive effects on engine particulate emissions before a particulate filter. Measurements were made on a 4 cylinder direct injection diesel engine and included total particulate mass, soluble organic fraction for both fuels, and polynuclear aromatic hydrocarbon emissions for the low sulfur fuel. The cerium based additive reduced the emissions with both fuels, with the largest effect being on the non-SOF fraction. With the other additives and the high sulfur fuel, non-SOF emissions were increased, increasing total particulate emissions. Copper was found to reduce the polynuclear aromatic hydrocarbons, and cerium was found to have the least effect. The use of an SiC wall flow filter reduced particulate and polynuclear aromatic emissions by over 90%.
Technical Paper

High Compression Ratio Engine Operation on Biomass Producer Gas

2011-08-30
2011-01-2000
Experimental investigations have been conducted with two identical small scale SI gas engines gen-sets operating on biomass producer gas from thermal gasification of wood. The engines where operated with two different compression ratios, one with the original compression ratio for natural gas operation 9.5:1, and the second with a compression ratio of 18.5:1. It was shown that high compression ratio SI engine operation was possible when operating on biomass producer gas from a TwoStage gasifier. The results showed an increase in the electrical efficiency from 31% to 35% when the compression ratio was increased. The influence of ignition timing on emissions was investigated during high compression ratio operation. It was shown that for λ=1.4 the NOx emission decreases by almost a factor 3, when the timing is retarded from 13° to 7° before top dead center.
Journal Article

Insights into Engine Knock: Comparison of Knock Metrics across Ranges of Intake Temperature and Pressure in the CFR Engine

2018-04-03
2018-01-0210
Of late there has been a resurgence in studies investigating parameters that quantify combustion knock in both standardized platforms and modern spark-ignition engines. However, it is still unclear how metrics such as knock (octane) rating, knock onset, and knock intensity are related and how fuels behave according to these metrics across a range of conditions. As part of an ongoing study, the air supply system of a standard Cooperative Fuel Research (CFR) F1/F2 engine was modified to allow mild levels of intake air boosting while staying true to its intended purpose of being the standard device for American Society for Testing and Materials (ASTM)-specified knock rating or octane number tests. For instance, the carburation system and intake air heating manifold are not altered, but the engine was equipped with cylinder pressure transducers to enable both logging of the standard knockmeter readout and state-of-the-art indicated data.
Technical Paper

Mean Value Engine Modelling of an SI Engine with EGR

1999-03-01
1999-01-0909
Mean Value Engine Models (MVEMs) are simplified, dynamic engine models which are physically based. Such models are useful for control studies, for engine control system analysis and for model based engine control systems. Very few published MVEMs have included the effects of Exhaust Gas Recirculation (EGR). The purpose of this paper is to present a modified MVEM which includes EGR in a physical way. It has been tested using newly developed, very fast manifold pressure, manifold temperature, port and EGR mass flow sensors. Reasonable agreement has been obtained on an experiemental engine, mounted on a dynamometer.
Technical Paper

Mean Value Modelling of Turbocharged Spark Ignition Engines

1998-02-23
980784
An important paradigm for the modelling of naturally aspirated (NA) spark ignition (SI) engines for control purposes is the Mean Value Engine Model (MVEM). Such models have a time resolution which is just sufficient to capture the main details of the dynamic performance of NA SI engines but not the cycle-by-cycle behavior. In principle such models are also physically based, are very compact in a mathematical sense but nevertheless can have reasonable prediction accuracy. Presently no MVEMs have been constructed for intercooled turbocharged SI engines because their complexity confounds the simple physical understanding and description of such engines. This paper presents a newly constructed MVEM for a turbocharged SI engine which contains the details of the compressor and turbine characteristics in a compact way. The model has been tested against the responses of an experimental engine and has reasonable accuracy for realistic operating scenarios.
Technical Paper

Modelling of the Intake Manifold Filling Dynamics

1996-02-01
960037
Mean Value Engine Models (MVEMs) are dynamic models which describe dynamic engine variable (or state) responses as mean rather than instantaneous values on time scales slightly longer than an engine event. Such engine variables are the independent variables in nonlinear differential (or state) equations which can be quite compact but nevertheless quite accurate. One of the most important of the differential equations for a spark ignition (SI) engine is the intake manifold filling (often manifold pressure) state equation. This equation is commonly used to estimate the air mass flow to an SI engine during fast throttle angle transients to insure proper engine fueling. The purpose of this paper is to derive a modified manifold pressure state equation which is simpler and more physical than those currently found in the literature. This new formulation makes it easier to calibrate a MVEM for different engines and provides new insights into dynamic SI engine operation.
Technical Paper

Mutagenic Activity of the Soluble Organic Fraction of Exhaust Gas Particulate from a Direct Injection Diesel Engine

1996-10-01
961977
The main purpose of this study was to investigate the influence of diesel engine conditions on the mutagenic activity of the exhaust. Special emphasis was put on investigation of the influence of nitrogen oxides content. Experiments with a diesel engine have been carried out in the laboratory and the emissions of carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx) and particulate matter (PM) have been measured at different engine conditions. The particulate matter was extracted in order to obtain the soluble organic fraction (SOF), and this fraction was analyzed for mutagenic activity in the Salmonella/microsome assay (AMES test). It was found that the mutagenic activity evidently depended on the PAH content (PAH = Polycyclic Aromatic Hydrocarbons) of the exhaust gas rather than the NOx content. However, the percentage of the direct mutagenic activity of the total mutagenic activity increased as the NOx content in the exhaust gas increased.
X