Refine Your Search

Topic

Author

Search Results

Technical Paper

3 Load Cell Tumble Meter Development

2008-12-02
2008-01-3004
This paper will describe the development of the 3-load cell tumble meter. This is a new method for measuring the tumble component of in-cylinder mixture motion. In-cylinder mixture motion is an important parameter for understanding and improving combustion stability of piston engines.
Technical Paper

A Method for Obtaining Optimum Fuel Economy Performance using Transient Combustion Measurements

2009-04-20
2009-01-0243
An experiment was conducted testing a powertrain package consisting of a four cylinder four valve engine coupled to a four speed automatic transmission in a dynamometer test cell. Cylinder pressure transducers, an encoder, and other instrumentation were used to measure transient combustion events. The transient cycle chosen for testing was a Cold 80 of the Federal Test Procedure (FTP) that produces a standardized fuel economy value. After analyzing the combustion events, a determination was made between the spark advance delivered and a revised spark advance for optimum combustion efficiency. Based upon the relationship between spark advance and fuel consumption, a prediction for the improved fuel consumption was made. The testing was then repeated to evaluate the revised spark advance and the fuel economy benefits in comparison to the predicted values.
Technical Paper

A Method for Torsional Damper Tuning Based On Baseline Frequency Response Functions

2009-05-19
2009-01-2152
Based on Woodbury-Sherman-Morrison formula, a general and efficient method for torsional damper tuning is presented. This method is based on exact calculation of the resulting Frequency Response Functions (FRF's) of the system with the damper by using the original (old) FRF's of the original (baseline) system and the damper's parameters (the mass polar moment of inertia, stiffness and damping coefficient). The only requirement for this method is to have the baseline FRF's at the active points of the structure where the damper is to be attached and those point where the resulting FRF's are of interest. The baseline FRF's can be obtained by either analytical or experimental methods. Once this requirement is met, all possible scenarios of the dampers for their potential and feasibility can be efficiently evaluated before being put into service without the need for costly hardware modification and test cycles on actual structure.
Technical Paper

A Novel Approach to Real-Time Estimation of the Individual Cylinder Combustion Pressure for S.I. Engine Control

1999-03-01
1999-01-0209
Over the last decade, many methods have been proposed for estimating the in-cylinder combustion pressure or the torque from instantaneous crankshaft speed measurements. However, such approaches are typically computationally expensive. In this paper, an entirely different approach is presented to allow the real-time estimation of the in-cylinder pressures based on crankshaft speed measurements. The technical implementation of the method will be presented, as well as extensive results obtained for a V-6 S.I. engine while varying spark timing, engine speed, engine load and EGR. The method allows to estimate the in-cylinder pressure with an average estimation error of the order of 1 to 2% of the peak pressure. It is very general in its formulation, is statistically robust in the presence of noise, and computationally inexpensive.
Technical Paper

AFR Control on a Single Cylinder Engine Using the Ionization Current

1998-02-23
980203
Over the years numerous researchers have suggested that the ionization current signal carries within it combustion relevant information. The possibility of using this signal for diagnostics and control provides motivation for continued research in this area. To be able to use the ion current signal for feedback control a reliable estimate of some combustion related parameter is necessary and therein lies the difficulty. Given the nature of the ion current signal this is not a trivial task. Fei An et al. [1] employed PCA for feature extraction and then used these feature vectors to design a neural network based classifier for the estimation of air to fuel ratio (AFR). Although the classifier predicted AFR with sufficient reliability, a major draw back was that the ion current signals used for prediction were averaged signals thus precluding a cycle to cycle estimate of AFR.
Technical Paper

Air-Fuel Ratio Control for a High Performance Engine using Throttle Angle Information

1999-03-01
1999-01-1169
This paper presents the development of a model-based air/fuel ratio controller for a high performance engine that uses, in addition to other usual signals, the throttle angle to enable predictive air mass flow rate estimation. The objective of the paper is to evaluate the possibility to achieve a finer air/fuel ratio control during transients that involve sudden variations in the physical conditions inside the intake manifold, due, for example, to fast throttle opening or closing actions. The air mass flow rate toward the engine cylinders undertakes strong variation in such transients, and its correct estimation becomes critical mainly because of the time lag between its evaluation and the instant when the air actually enters the cylinders.
Journal Article

An Evaluation of Residual Gas Fraction Measurement Techniques in a High Degree of Freedom Spark Ignition Engine

2008-04-14
2008-01-0094
Stringent fuel economy and emissions regulations have driven development of new mixture preparation technologies and increased spark-ignition engine complexity. Additional degrees of freedom, brought about by devices such as cam phasers and charge motion control valves, enable greater range and flexibility in engine control. This permits significant gains in fuel efficiency and emission control, but creates challenges related to proper engine control and calibration techniques. Accurate experimental characterization of high degree of freedom engines is essential for addressing the controls challenge. In particular, this paper focuses on the evaluation of three experimental residual gas fraction measurement techniques for use in a spark ignition engine equipped with dual-independent variable camshaft phasing (VVT).
Technical Paper

An Experimental Study on the Effect of Intake Primary Runner Blockages on Combustion and Emissions in SI Engines under Part-Load Conditions

2004-10-25
2004-01-2973
Charge motion is known to accelerate and stabilize combustion through its influence on turbulence intensity and flame propagation. The present work investigates the effect of charge motion generated by intake runner blockages on combustion characteristics and emissions under part-load conditions in SI engines. Firing experiments have been conducted on a DaimlerChrysler (DC) 2.4L 4-valve I4 engine, with spark range extending around the Maximum Brake Torque (MBT) timing. Three blockages with 20% open area are compared to the fully open baseline case under two operating conditions: 2.41 bar brake mean effective pressure (bmep) at 1600 rpm, and 0.78 bar bmep at 1200 rpm. The blocked areas are shaped to create different levels of swirl, tumble, and cross-tumble. Crank-angle resolved pressures have been acquired, including cylinders 1 and 4, intake runners 1 and 4 upstream and downstream of the blockage, and exhaust runners 1 and 4.
Technical Paper

An Investigation of Mixture Formation Processes During Start-Up of a Natural Gas Powered SI Engine

1998-05-04
981387
The mixture formation processes of methane and air in an optical access engine operating steadily at 200 RPM have been explored in order to study charge inhomogeneity in a natural gas powered spark ignition engine during transient engine cranking. Planar Laser Induced Fluorescence has been used to create fuel/air equivalence ratio maps as a function of injection timing for various image planes at intervals throughout the intake and compression strokes. The work has been done using a Honda VTEC-E engine head that features port injection, four valves per cylinder, a pentroof style combustion chamber for the generation of tumble motion, and one nearly deactivated intake valve to generate swirl motion at low engine speeds in order to enhance mixing.
Technical Paper

An Investigation of Shaft Dynamic Effects on Gear Vibration and Noise Excitations

2003-05-05
2003-01-1491
Transmission error has long been identified to be the main exciter of gear whine noise. This research effort seeks to investigate the mechanisms and principal controlling factors that affect the actual noise generation from a typical gearbox housing due to transmission error excitations. The insight gained is expected to help in identifying possible noise control procedures in typical gearing applications. The example gearbox of this paper is an aircraft auxiliary-drive idler gearbox run at low load so that transmission error is the primary mesh excitation. A limited set of dynamic noise and vibration data are collected in transient speed run-ups. A contact-mechanics gear-tooth model is used to predict the static transmission error at each mesh. A finite-element model of the shafting that incorporates complex shaft and bearing data is used to predict the shaft dynamics with the static transmission error at the gear mesh(es) as the sole excitation.
Journal Article

Analysis of Speed-Dependent Vibration Amplification in a Nonlinear Driveline System Using Hilbert Transform

2013-05-13
2013-01-1894
The engine start-up process introduces speed-dependent transient vibration problems in ground vehicle drivelines as the torsional system passes through the critical speeds during the acceleration process. Accordingly, a numerical study is proposed to gain more insights about this transient vibration issue, and the focus is on nonlinear analysis. First, a new nonlinear model of a multi-staged clutch damper is developed and validated by a transient experiment. Second, a simplified nonlinear torsional oscillator model with the multi-staged clutch damper, representing the low frequency dynamics of a typical vehicle driveline, is developed. The flywheel velocity measured during the typical engine start-up process is utilized as an excitation. The envelope function of the speed-dependent response amplification is estimated via the Hilbert transform technique. Finally, the envelope function is effectively utilized to examine the effect of multi-staged clutch damper properties.
Technical Paper

Application of Combustion Sound Level (CSL) Analysis for Powertrain

2009-05-19
2009-01-2168
Powertrain noise is a significant factor in determination of the overall vehicle refinement expected by today's discriminating automotive customer. Development of a powertrain to meet these expectations requires a thorough understanding of the contributing noise sources. Specifically, combustion noise greatly impacts the perception of sound levels and quality. The relevance of combustion noise development has increased with the advent of newer efficiency-driven technologies such as direct injection or homogeneous charge compression ignition. This paper discusses the application of a CSL (Combustion Sound Level) analysis-a method for the identification and optimization of combustion noise. Using CSL, it is possible to separate mechanical and combustion noise sources.
Technical Paper

Application of Kinetics of Thermal Degradation for Time-Temperature Analysis of Automotive Components

2009-04-20
2009-01-1178
A fundamental problem in the development of automotive thermal protection strategies is the understanding of the effect of time and temperature on vehicle components life and their performance throughout the life of the vehicle. Due to restrictions on emissions and the stringent requirements for improved fuel economy, the use of polymers and synthetic materials has been widely adopted in automotive applications. It is therefore critical to develop a process to estimate life of engineering materials based on thermal testing and material physical properties. While a series of carefully selected vehicle tests can determine components temperatures during different testing conditions, a need still exists to determine the expected component life and performance throughout the life of the vehicle. Kinetic models have been widely used, in literature, to determine the aging of polymeric and composite materials over time.
Technical Paper

Application of Model-Based Design Techniques for the Control Development and Optimization of a Hybrid-Electric Vehicle

2009-04-20
2009-01-0143
Model-based design is a collection of practices in which a system model is at the center of the development process, from requirements definition and system design to implementation and testing. This approach provides a number of benefits such as reducing development time and cost, improving product quality, and generating a more reliable final product through the use of computer models for system verification and testing. Model-based design is particularly useful in automotive control applications where ease of calibration and reliability are critical parameters. A novel application of the model-based design approach is demonstrated by The Ohio State University (OSU) student team as part of the Challenge X advanced vehicle development competition. In 2008, the team participated in the final year of the competition with a highly refined hybrid-electric vehicle (HEV) that uses a through-the-road parallel architecture.
Technical Paper

Application of Tuned Mass Damper to Address Discrete Excitation Away From Primary Resonance Frequency of a Structure

2009-05-19
2009-01-2125
Tuned mass dampers (TMDs) or vibration absorbers are widely used in the industry to address various NVH issues, wherein, tactile-vibration or noise mitigation is desired. TMDs can be classified into two categories, namely, tuned-to-resonance and tuned-to-discrete-excitation. An overwhelming majority of TMD applications found in the industry belong to the tuned-to-resonance category, so much of information is available on design considerations of such dampers; however, little is published regarding design considerations of dampers tuned-to-discrete-excitation. During this study, a problem was solved that occurred at a discrete excitation frequency away from the primary resonance frequency of a steering column-wheel assembly. A solution was developed in multiple stages. First the effects of various factors such as mass and damping were analyzed by using a closed-form solution.
Technical Paper

Autoignition Characteristics of Primary Reference Fuels and their Mixtures

2009-11-02
2009-01-2624
This study investigates the autoignition of Primary Reference Fuels (PRFs) using a detailed kinetic model. The chemical kinetics software CHEMKIN is used to facilitate solutions in a constant volume reactor and a variable volume reactor, with the latter representing an IC engine. Experimental shock tube and HCCI engine data from literature is compared with the present predictions in these two reactors. The model is then used to conduct a parametric study in the constant volume reactor of the effect of inlet pressure, inlet temperature, octane number, fuel/air equivalence ratio, and exhaust gas recirculation (EGR) on the autoignition of PRF/air mixtures. A number of interesting characteristics are demonstrated in the parametric study. In particular, it is observed that PRFs can exhibit single or two stage ignition depending on the inlet temperature. The total ignition delay, whether single or two stage, is correlated withn-C7H16/O2 ratio.
Technical Paper

Biomechanical Responses of PMHS Subjected to Abdominal Seatbelt Loading

2016-11-07
2016-22-0004
Past studies have found that a pressure based injury risk function was the best predictor of liver injuries due to blunt impacts. In an effort to expand upon these findings, this study investigated the biomechanical responses of the abdomen of post mortem human surrogates (PMHS) to high-speed seatbelt loading and developed external response targets in conjunction with proposing an abdominal injury criterion. A total of seven unembalmed PMHS, with an average mass and stature of 71 kg and 174 cm respectively were subjected to belt loading using a seatbelt pull mechanism, with the PMHS seated upright in a free-back configuration. A pneumatic piston pulled a seatbelt into the abdomen at the level of the umbilicus with a nominal peak penetration speed of 4.0 m/s. Pressure transducers were placed in the re-pressurized abdominal vasculature, including the inferior vena cava (IVC) and abdominal aorta, to measure internal pressure variation during the event.
Technical Paper

Case History: Engine Timing Gear Noise Reduction

1999-05-17
1999-01-1716
This paper describes the procedures used to reduce the tonal noise of a class eight truck engine timing gear train that was initially found to be objectionable under idle operating conditions. Initial measurements showed that the objectionable sounds were related to the fundamental gear mesh frequency, and its second and third harmonics. Experimental and computational procedures used to study and trouble-shoot the problem include vibration and sound measurements, transmission error analysis of the gears under light load condition, and a dynamic analysis of the drive system. Detail applications of these techniques are described in this paper.
Journal Article

Circumferential Variation of Noise at the Blade-Pass Frequency in a Turbocharger Compressor with Ported Shroud

2021-08-31
2021-01-1044
The ported shroud casing treatment for turbocharger compressors offers a wider operating flow range, elevated boost pressures at low compressor mass flow rates, and reduced broadband whoosh noise in spark-ignition internal combustion engine applications. However, the casing treatment elevates tonal noise at the blade-pass frequency (BPF). Typical rotational speeds of compressors employed in practice push BPF noise to high frequencies, which then promote multi-dimensional acoustic wave propagation within the compressor ducting. As a result, in-duct acoustic measurements become sensitive to the angular location of pressure transducers on the duct wall. The present work utilizes a steady-flow turbocharger gas stand featuring a unique rotating compressor inlet duct to quantify the variation of noise measured around the duct at different angular positions.
Technical Paper

Closed Loop Steering System Model for the National Advanced Driving Simulator

2004-03-08
2004-01-1072
This paper presents the details of the model for the physical steering system used on the National Advanced Driving Simulator. The system is basically a hardware-in-the-loop (steering feedback motor and controls) steering system coupled with the core vehicle dynamics of the simulator. The system's torque control uses cascaded position and velocity feedback and is controlled to provide steering feedback with variable stiffness and dynamic properties. The reference model, which calculates the desired value of the torque, is made of power steering torque, damping function torque, torque from tires, locking limit torque, and driver input torque. The model also provides a unique steering dead-band function that is important for on-center feel. A Simulink model of the hardware/software is presented and analysis of the simulator steering system is provided.
X