Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

0D/3D Simulations of Combustion in Gasoline Engines Operated with Multiple Spark Plug Technology

2015-04-14
2015-01-1243
A simulation method is presented for the analysis of combustion in spark ignition (SI) engines operated at elevated exhaust gas recirculation (EGR) level and employing multiple spark plug technology. The modeling is based on a zero-dimensional (0D) stochastic reactor model for SI engines (SI-SRM). The model is built on a probability density function (PDF) approach for turbulent reactive flows that enables for detailed chemistry consideration. Calculations were carried out for one, two, and three spark plugs. Capability of the SI-SRM to simulate engines with multiple spark plug (multiple ignitions) systems has been verified by comparison to the results from a three-dimensional (3D) computational fluid dynamics (CFD) model. Numerical simulations were carried for part load operating points with 12.5%, 20%, and 25% of EGR. At high load, the engine was operated at knock limit with 0%, and 20% of EGR and different inlet valve closure timing.
Journal Article

26,500km Down the Pan-American Highway in an Electric Vehicle A Battery's Perspective

2012-04-16
2012-01-0123
This paper presents a novel battery degradation model based on empirical data from the Racing Green Endurance project. Using the rainflow-counting algorithm, battery charge and discharge data from an electric vehicle has been studied in order to establish more reliable and more accurate predictions for capacity and power fade of automotive traction batteries than those currently available. It is shown that for the particular lithium-iron phosphate (LiFePO₄) batteries, capacity fade is 5.8% after 87 cycles. After 3,000 cycles it is estimated to be 32%. Both capacity and power fade strongly depend on cumulative energy throughput, maximum C-rate as well as temperature.
Technical Paper

3D CFD Analysis of the Influence of Some Geometrical Engine Parameters on Small PFI Engine Performances - The Effects on Tumble Motion and Mean Turbulent Intensity Distribution

2012-10-23
2012-32-0096
In scooter/motorbike engines coherent and stable tumble motion generation is still considered an effective mean in order to both reduce engine emissions and promote higher levels of combustion efficiency. The scientific research also assessed that squish motion is an effective mean for speeding up the combustion in a combustion process already fast. In a previous technical paper the authors demonstrated that for an engine having a high C/D ratio the squish motion is not only not necessary but also detrimental for the stability of the tumble motion itself, because there is a strong interaction between these two motions with the consequent formation of secondary vortices, which in turn penalizes the tumble breakdown and the turbulent kinetic energy production.
Technical Paper

3D Large Scale Simulation of the High-Speed Liquid Jet Atomization

2007-04-16
2007-01-0244
In this paper three-dimensional Large Eddy Simulations (i.e., LES) by using a PLIC-VOF method have been adopted to investigate the atomization process of round liquid jets issuing from automotive multi-hole injector-like nozzles. LES method is used to compute directly the effect of the large flow structure, being the smallest one modelled. A mesh having a cell size of 4 μm was used in order to derive a statistics of the detached liquid structures, i.e. droplets and ligaments. The latter have been identified by using an algorithm coded by authors. Cavitation modeling has not been included in the present computations. Two different mean injection nozzle flow velocities of 50 m/s and 270 m/s, corresponding to two mean nozzle flow Reynolds numbers of 1600 and 8700, respectively, have been considered in the calculations as representative of laminar and turbulent nozzle flow conditions.
Technical Paper

A 3D User and Maintenance Manual for UAVs and Commercial Aircrafts Based on Augmented Reality

2015-09-15
2015-01-2473
Traditional User/Maintenance Manuals provide useful information when dealing with simple machines. However, when dealing with complex systems of systems and highly miniaturized technologies, like UAVs, or with machines with millions of parts, a commercial aircraft is a case in point, new technologies taking advantage of Augmented Reality can rapidly and effectively support the maintenance operations. This paper presents a User/Maintenance Manual based on Augmented Reality to help the operator in the detection of parts and in the sequence to be followed to assemble/disassemble systems and subsystems. The proposed system includes a handheld device and/or an head mounted display or special goggles, to be used by on-site operators, with software management providing data fusion and overlaying traditional 2D user/maintenance manual information with an augmented reality software and appropriate interface.
Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

2017-03-28
2017-01-0837
Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Journal Article

A Control-Oriented Knock Intensity Estimator

2017-09-04
2017-24-0055
The performance optimization of modern Spark Ignition engines is limited by knock occurrence: heavily downsized engines often are forced to work in the Knock-Limited Spark Advance (KLSA) range. Knock control systems monitor the combustion process, allowing to achieve a proper compromise between performance and reliability. Combustion monitoring is usually carried out by means of accelerometers or ion sensing systems, but recently the use of cylinder pressure sensors is also becoming frequent in motorsport applications. On the other hand, cylinder pressure signals are often available in the calibration stage, where SA feedback-control based on the pressure signal can be used to avoid damages to the engine during automatic calibration. A predictive real-time combustion model could help optimizing engine performance, without exceeding the allowed knock severity.
Technical Paper

A Flow and Loading Coefficient-Based Compressor Map Interpolation Technique for Improved Accuracy of Turbocharged Engine Simulations

2017-09-04
2017-24-0023
Internal combustion engines are routinely developed using 1D engine simulation tools. A well-known limitation is the accuracy of the turbocharger compressor and turbine sub-models, which rely on hot gas bench-measured maps to characterize performance. Such discrete map data is inherently too sparse to be used directly in simulation, and so a preprocessing algorithm interpolates and extrapolates the data to generate a wider, more densely populated map. Methods used for compressor map interpolation vary. They may be mathematical or physical in nature, but there is no unified approach, except that they typically operate on input map data in SAE format. For decades it has been common practice for turbocharger suppliers to share performance data with engine OEMs in this form. This paper describes a compressor map interpolation technique based on the nondimensional compressor flow and loading coefficients, instead of SAE-format data.
Video

A Framework for Simulation-Based Development and Calibration of VCU-Functions for Advanced PHEV Powertrains

2012-05-23
Due to the integration of many interacting subsystems like hybrid vehicle management, energy management, distance management, etc. into the VCU platform the design steps for function development and calibration become more and more complex. This makes an aid necessary to relieve the development. Therefore, the aim of the proposed simulation-based development and calibration design is to improve the time-and-cost consuming development stages of modern VCU platforms. A simulation-based development framework is shown on a complex function development and calibration case study using an advanced powertrain concept with a plug-in hybrid electric vehicle (PHEV) concept with two electrical axles. Presenter Thomas Boehme, IAV GmbH
Technical Paper

A Framework for Simulation-Based Development and Calibration of VCU-Functions for Advanced PHEV Powertrains

2012-04-16
2012-01-1032
Due to the integration of many interacting subsystems like hybrid vehicle management, energy management, distance management, etc. into the VCU platform the design steps for function development and calibration become more and more complex. This makes an aid necessary to relieve the development. Therefore, the aim of the proposed simulation-based development and calibration design is to improve the time-and-cost consuming development stages of modern VCU platforms. A simulation-based development framework is shown on a complex function development and calibration case study using an advanced powertrain concept with a plug-in hybrid electric vehicle (PHEV) concept with two electrical axles.
Technical Paper

A Fuzzy Decision-Making System for Automotive Application

1998-02-23
980519
Fault diagnosis for automotive systems is driven by government regulations, vehicle repairability, and customer satisfaction. Several methods have been developed to detect and isolate faults in automotive systems, subsystems and components with special emphasis on those faults that affect the exhaust gas emission levels. Limit checks, model-based, and knowledge-based methods are applied for diagnosing malfunctions in emission control systems. Incipient and partial faults may be hard to detect when using a detection scheme that implements any of the previously mentioned methods individually; the integration of model-based and knowledge-based diagnostic methods may provide a more robust approach. In the present paper, use is made of fuzzy residual evaluation and of a fuzzy expert system to improve the performance of a fault detection method based on a mathematical model of the engine.
Technical Paper

A Highly Efficient Simulation-Based Calibration Method Exemplified by the Charge Control

2005-04-11
2005-01-0052
A physically based simulation program developed by IAV makes a notable reduction of test bed measurements for the calibration of the cylinder charge calculation possible. Based upon geometric engine parameters and camshaft profiles, the cylinder charge is calculated from thermodynamic relationships taking into account the contribution of residual gas. After successful engine-specific calibration of the simulation model on the basis of a reduced set of test bed measurements, it is possible to calculate the cylinder air mass over the entire range of valve timing settings and operating points (engine load and speed). The simulation-generated “virtual” measurements can then be used for calibration of the control unit software over the entire operating range.
Technical Paper

A Hybrid Full Vehicle Model for Structure Borne Road Noise Prediction

2005-05-16
2005-01-2467
As vehicle development timelines continue to shorten, it is necessary for the full vehicle NVH engineer to be able to predict performance without actual prototypes. There has been significant advancement in the accuracy of finite element modeling techniques of trimmed bodies; however accuracy is still low in the road noise mid frequency range from 150-400Hz. Also, calculation times for these frequencies are long, with very large results files in some cases. To alleviate these limitations, a Hybrid approach has been used, where a finite element suspension and drive train model is coupled with a test based Frequency Response Function (FRF) model of the trimmed body. The predicted road noise level was compared to actual vehicle tests and exhibited excellent correlation.
Technical Paper

A Method of Flow Measurement About Full-Scale and Model-Scale Vehicles

2000-03-06
2000-01-0871
High-frequency pressure probes were used to map the airflow around a full-scale truck during on-road testing and around a model-scale truck during wind tunnel testing. Several configurations were tested during each type of testing. Results are presented for on-road ‘pass-by’ tests and detail velocity and coefficient of pressure variation alongside the truck at different heights. The wind tunnel data are results of flow mapping about a 10% scale model and show the velocity and coefficient of pressure distribution under and around the model truck for different configurations.
Technical Paper

A Methodology for In-Cylinder Flow Field Evaluation in a Low Stroke-to-Bore SI Engine

2002-03-04
2002-01-1119
This paper presents a methodology for the 3D CFD simulation of the intake and compression processes of four stroke internal combustion engines.The main feature of this approach is to provide very accurate initial conditions by means of a cost-effective initialization step. Calculations are applied to a low stroke-to-bore SI engine, operated at full load and maximum engine speed. It is demonstrated that initial conditions for this kind of engines have an important influence on flow field development, particularly in terms of mean velocities close to the firing TDC. Simulation results are used to discuss the choice of a set of parameters for the flow field characterization of low stroke-to-bore engines, as well as to provide an insight into the flow patterns during the overlapping period.
Technical Paper

A New Approach for Process-Oriented and Tool Based Calibration Tasks for Engine Management Systems

2006-04-03
2006-01-1570
This paper describes a new approach for the calibration of engine management systems based on a newly developed calibration tool. This approach is based on the idea to design the calibration process of a certain calibration task by means of a computer based stateflow/workflow diagram. By means of library methods for certain calibration routines, the calibration engineer can design his calibration process in a Stateflow diagram and then transfer this function in an executable file, guiding and supporting the engineer for performing his task. Due to this approach a documentation of the calibration process, the performed calibration task and a guided and automated calibration process can be performed.
Technical Paper

A New Approach for a Multi-Fuel, Torque Based ECU Concept using Automatic Code Generation

2001-03-05
2001-01-0267
The software design of this new engine control unit is based on a unique and homogenous torque structure. All input signals are converted into torque equivalents and a torque coordinator determines their influence on the final torque delivered to the powertrain. The basic torque structure is independent on the type of fuel and can be used for gasoline, diesel, or CNG injection systems. This allows better use of custom specific algorithms and facilitates reusability, which is supported by the graphical design tool that creates all modules using automatic code generation. Injection specific algorithms can be linked to the software by simply setting a software switch.
Journal Article

A New De-throttling Concept in a Twin-Charged Gasoline Engine System

2015-04-14
2015-01-1258
Throttling loss of downsized gasoline engines is significantly smaller than that of naturally aspirated counterparts. However, even the extremely downsized gasoline engine can still suffer a relatively large throttling loss when operating under part load conditions. Various de-throttling concepts have been proposed recently, such as using a FGT or VGT turbine on the intake as a de-throttling mechanism or applying valve throttling to control the charge airflow. Although they all can adjust the mass air flow without a throttle in regular use, an extra component or complicated control strategies have to be adopted. This paper will, for the first time, propose a de-throttling concept in a twin-charged gasoline engine with minimum modification of the existing system. The research engine model which this paper is based on is a 60% downsized 2.0L four cylinder gasoline demonstrator engine with both a supercharger and turbocharger on the intake.
Technical Paper

A New Hardware-Assisted Inlet Port Development Process for Diesel Engines Using Doppler Global Velocimetry

2005-04-11
2005-01-0640
As more virtual product development is integrated into the mass-production development process and overall development times are shortened, efficient intake-port design requires closer cooperation between design, simulation and test engineers. Doppler Global Velocimetry (DGV) has become an important link in the overall intake-port development process as it provides 3D-vector fields of flow velocity. Hence, it can be used to make direct comparisons with 3D-CFD-simulation results. The present paper describes the hardware-assisted inlet port development process for diesel engines, the cooperation among port design, 3D-CFD-simulation with the creation of alternative geometries and DGV flow-measurement of preferred variants with their capability of checking and improving simulation results.
Technical Paper

A Novel Approach to Cooperative and Non-Cooperative RPAS Detect-and-Avoid

2015-09-15
2015-01-2470
A unified approach to cooperative and non-cooperative Detect-and-Avoid (DAA) is a key enabler for Remotely Piloted Aircraft System (RPAS) to safely and routinely access all classes of airspace. In this paper state-of-the-art cooperative and non-cooperative DAA sensor/system technologies for manned aircraft and RPAS are reviewed and the associated multi-sensor data fusion techniques are discussed. A DAA system architecture is presented based on Boolean Decision Logics (BDL) for selecting non-cooperative and cooperative sensors/systems including both passive and active Forward Looking Sensors (FLS), Traffic Collision Avoidance System (TCAS) and Automatic Dependent Surveillance - Broadcast (ADS-B). After elaborating the DAA system processes, the key mathematical models associated with both non-cooperative and cooperative DAA functions are presented.
X