Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Air-Fuel Ratio Control for a High Performance Engine using Throttle Angle Information

1999-03-01
1999-01-1169
This paper presents the development of a model-based air/fuel ratio controller for a high performance engine that uses, in addition to other usual signals, the throttle angle to enable predictive air mass flow rate estimation. The objective of the paper is to evaluate the possibility to achieve a finer air/fuel ratio control during transients that involve sudden variations in the physical conditions inside the intake manifold, due, for example, to fast throttle opening or closing actions. The air mass flow rate toward the engine cylinders undertakes strong variation in such transients, and its correct estimation becomes critical mainly because of the time lag between its evaluation and the instant when the air actually enters the cylinders.
Technical Paper

Engine Acoustic Emission Used as a Control Input: Applications to Diesel Engines

2016-04-05
2016-01-0613
The need for strategies that allow managing combustion in an adaptive way has recently widely increased. Especially Diesel engines aimed for clean combustion require a precise control of the combustion outputs. Acoustic emission of internal combustion engines contains a lot of information related to engine behavior and working conditions. Mechanical noise and combustion noise are usually the main contributions to the noise produced by an engine. Combustion noise in particular can be used as an indicator of the combustion that is taking place inside the combustion chamber and therefore as a reference for the control strategy. This work discusses the correlations existing between in cylinder combustion and the acoustic emission radiated by the engine and presents a possible approach to use this signal in the engine management system for control purposes.
Journal Article

Injection Pattern Design for Real Time Control of Diesel Engine Acoustic Emission

2017-03-28
2017-01-0596
Upcoming more stringent emission regulations throughout the world pose a real challenge, especially in regard to Diesel systems for passenger cars, where the need of additional after-treatment has a big impact in terms of additional system costs and available packaging space. Therefore, the need for strategies that allow managing combustion towards lower emissions, that require a precise control of the combustion outputs, is definitely increasing. Acoustic emission of internal combustion engines contains a large amount of information related to engine behavior and working conditions. Mechanical noise and combustion noise are usually the main contributions to the noise produced by an engine. In particular, recent research from the same authors of this paper demonstrated that combustion noise can be used as an indicator of the combustion that is taking place inside the combustion chamber and therefore as a reference for the control strategy.
Technical Paper

Injection Pattern Investigation for Gasoline Partially Premixed Combustion Analysis

2019-09-09
2019-24-0112
Nowadays, compression-ignited engines are considered the most efficient and reliable technology for automotive applications. However, mainly due to the current emission regulations, that require increasingly stringent reductions of NOx and particulate matter, the use of diesel-like fuels is becoming a critical issue. For this reason, a large amount of research and experimentation is being carried out to investigate innovative combustion techniques suitable to simultaneously mitigate the production of NOx and soot, while improving engine efficiency. In this scenario, the combined use of compression-ignited engines and gasoline-like fuels proved to be very promising, especially in case the fuel is directly-injected in the combustion chamber at high pressure. The presented study analyzes the combustion process produced by the direct injection of small amounts of gasoline in a compression-ignited light-duty engine.
Journal Article

Non-Intrusive Methodology for Estimation of Speed Fluctuations in Automotive Turbochargers under Unsteady Flow Conditions

2014-04-01
2014-01-1645
The optimization of turbocharging systems for automotive applications has become crucial in order to increase engine performance and meet the requirements for pollutant emissions and fuel consumption reduction. Unfortunately, performing an optimal turbocharging system control is very difficult, mainly due to the fact that the flow through compressor and turbine is highly unsteady, while only steady flow maps are usually provided by the manufacturer. For these reasons, one of the most important quantities to be used onboard for optimal turbocharger system control is the rotational speed fluctuation, since it provides information both on turbocharger operating point and on the energy of the unsteady flow in the intake and exhaust circuits. This work presents a methodology that allows determining the instantaneous turbocharger rotational speed through a proper frequency processing of the signal coming from one accelerometer mounted on the turbocharger compressor.
Technical Paper

Real-Time Evaluation of IMEP and ROHR-related Parameters

2007-09-16
2007-24-0068
Combustion control is one of the key factors to obtain better performance and lower pollutants emissions, for diesel, spark ignition and HCCI engines. This paper describes a real-time indicating system based on commercially available hardware and software, which allows the real-time evaluation of Indicated Mean Effective Pressure (IMEP) and Rate of Heat Release (ROHR) related parameters, such as 50%MFB, cylinder by cylinder, cycle by cycle. This kind of information is crucial for engine mapping and can be very important also for rapid control prototyping purposes. The project objective is to create a system able to process in-cylinder pressure signals in the angular domain without the need for crankshaft encoder, for example using as angular reference the signal coming from a standard equipment sensor wheel. This feature can be useful both for test bench and on-board tests.
Technical Paper

Remote Combustion Sensing Methodology for PCCI and Dual-Fuel Combustion Control

2015-09-06
2015-24-2420
The increasing request for pollutant emissions reduction spawned a great deal of research in the field of innovative combustion methodologies, that allow obtaining a significant reduction both in particulate matter and NOx emissions. Unfortunately, due to their nature, these innovative combustion strategies are very sensitive to in-cylinder thermal conditions. Therefore, in order to obtain a stable combustion, a closed-loop combustion control methodology is needed. Prior research has demonstrated that a closed-loop combustion control strategy can be based on the real-time analysis of in-cylinder pressure trace, that provides important information about the combustion process, such as Start (SOC) and Center of combustion (CA50), pressure peak location and torque delivered by each cylinder. Nevertheless, cylinder pressure sensors on-board installation is still uncommon, due to problems related to unsatisfactory measurement long term reliability and cost.
X