Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Mesh Based Approach for Unconventional Unmanned Airship Added Masses Computation

2013-09-17
2013-01-2191
Added masses computation is a crucial aspect to be considered when the density of a body moving in a fluid is comparable to the density of the fluid displaced: added mass can be defined as the inertia added to a system because an accelerating or decelerating body displaces some volume of neighboring fluid as it moves through it. The motion of vehicles like airships and ships can be addressed only by keeping into account the effect of added masses, while in case of aircrafts and helicopters this contribution is usually neglected. Lighter Than Air flight simulation, unmanned airships flight control system, airships flight dynamics are typical applications in which added masses are fundamental to achieve an effective and realistic modeling. A panel based method using the mesh of an airship external shape is developed to account for the added massed.
Technical Paper

A Modified Enhanced Driver Model for Heavy-Duty Vehicles with Safe Deceleration

2023-08-28
2023-24-0171
To accurately evaluate the energy consumption benefits provided by connected and automated vehicles (CAV), it is necessary to establish a reasonable baseline virtual driver, against which the improvements are quantified before field testing. Virtual driver models have been developed that mimic the real-world driver, predicting a longitudinal vehicle speed profile based on the route information and the presence of a lead vehicle. The Intelligent Driver Model (IDM) is a well-known virtual driver model which is also used in the microscopic traffic simulator, SUMO. The Enhanced Driver Model (EDM) has emerged as a notable improvement of the IDM. The EDM has been shown to accurately forecast the driver response of a passenger vehicle to urban and highway driving conditions, including the special case of approaching a signalized intersection with varying signal phases and timing. However, most of the efforts in the literature to calibrate driver models have focused on passenger vehicles.
Technical Paper

Accelerometers Equivalency in Dummy Crash Testing

1996-02-01
960454
The National Highway Traffic Safety Administration has initiated research to develop performance specifications for dummy-based accelerometers in the crash test environment, and to provide criteria for defining and establishing equivalent performance among accelerometers from different manufacturers. These research efforts are within the general guidelines on transducer equivalency outlined in the current revision of the Society of Automotive Engineers recommended practice, Instrumentation for Impact Test, SAE 211/2 March 1995. Representative data from vehicle crash and component level tests have been analyzed to determine the acceleration levels and frequency content in a realistic dynamic environment for dummy-based accelerometers.
Technical Paper

Application of Anthropomorphic Test Device Crash Test Kinetics to Post Mortem Human Subject Lower Extremity Testing

2006-04-03
2006-01-0251
The primary goal of the current study was to determine ATD lower extremity loading characteristics seen in frontal crash tests and apply these characteristics to isolated PMHS lower extremity impacts. Essentially, the study attempted to re-create the kinetics experienced by the Hybrid III 50th percentile ATD (HIII) in frontal crash tests and apply this crash test loading scenario directly to PMHS specimens efficiently and while maximizing the utilization of a small number of cadaver subjects. The secondary goal of this study was to determine the relationship between PMHS and HIII lower extremity impact response. Based on this comparison, it was anticipated that PMHS posterior cruciate ligament (PCL) injury threshold and timing could be related to knee shear in the HIII ball-bearing knee slider mechanism. HIII lower extremity loading was analyzed from a series of twenty-eight (28) frontal barrier or vehicle to vehicle crash tests from late model vehicles.
Technical Paper

Application of Enhanced Least Square to Component Synthesis Using FRF for Analyzing Dynamic Interaction of Coupled Body-Subframe System

1999-05-17
1999-01-1826
The component response synthesis approach utilizing frequency response function (FRF) has been used to analyze the dynamic interaction of two or more vehicle components coupled at discrete interface points. This method is somewhat suitable for computing higher frequency response because experimental component FRFs can be incorporated into the formulation directly. However its calculations are quite sensitive to measurement errors in the FRFs due to the several matrix inversion steps involved. In the past, researchers have essentially used a combined direct inverse and truncated singular valued decomposition (TSVD) technique to ensure a stable calculation, which is typically applied semi-empirically due to the lack of understanding of the influence of measurement error.
Technical Paper

Application of the Extended Kalman Filter to a Planar Vehicle Model to Predict the Onset of Jackknife Instability

2004-03-08
2004-01-1785
The widely used Extended Kalman Filter (EKF) is applied to a planar model of an articulated vehicle to predict jackknifing events. The states of hitch angle and hitch angle rate are estimated using a vehicle model and the available or “measured” states of lateral acceleration and yaw rate from the prime mover. Tuning, performance, and compromises for the EKF in this application are discussed. This application of the EKF is effective in predicting the onset of instability for an articulated vehicle under low-μ and low-load conditions. These conditions have been shown to be most likely to render heavy articulated vehicles vulnerable to jackknife instability. Options for model refinements are also presented.
Technical Paper

Biofidelity Evaluation of the THOR and Hybrid III 50th Percentile Male Frontal Impact Anthropomorphic Test Devices

2017-11-13
2017-22-0009
The objective of this study is to present a quantitative comparison of the biofidelity of the THOR and Hybrid III 50th percentile male ATDs. Quantitative biofidelity was assessed using NHTSA’s Biofidelity Ranking System in a total of 21 test conditions, including impacts to the head, face, neck, upper thorax, lower oblique thorax, upper abdomen, lower abdomen, femur, knee, lower leg, and whole-body sled tests to evaluate upper body kinematics and thoracic response under frontal and frontal oblique restraint loading. Biofidelity Ranking System scores for THOR were better (lower) than Hybrid III in 5 of 7 body regions for internal biofidelity and 6 of 7 body regions for external biofidelity. Nomenclature is presented to categorize the quantitative results, which show overall good internal and external biofidelity of the THOR compared to the good (internal) and marginal (external) biofidelity of the Hybrid III.
Technical Paper

Biomechanical Responses of PMHS in Moderate-Speed Rear Impacts and Development of Response Targets for Evaluating the Internal and External Biofidelity of ATDs

2012-10-29
2012-22-0004
The objectives of this study were to obtain biomechanical responses of post mortem human subjects (PMHS) by subjecting them to two moderate-speed rear impact sled test conditions (8.5g, 17 km/h; 10.5g, 24 km/h) while positioned in an experimental seat system, and to create biomechanical targets for internal and external biofidelity evaluation of rear impact ATDs. The experimental seat was designed to measure external loads on the head restraint (4 load cells), seat back (6 load cells), and seat pan (4 load cells) such that subject dynamic interaction with the seat could be evaluated. This seat system was capable of simulating the dynamic characteristics of modern vehicle seat backs by considering the moment-rotation properties of a typical passenger vehicle, thus providing a more realistic test environment than using a rigid seat with a non-rotating seat back as done in previous studies.
Technical Paper

Closed Loop Steering System Model for the National Advanced Driving Simulator

2004-03-08
2004-01-1072
This paper presents the details of the model for the physical steering system used on the National Advanced Driving Simulator. The system is basically a hardware-in-the-loop (steering feedback motor and controls) steering system coupled with the core vehicle dynamics of the simulator. The system's torque control uses cascaded position and velocity feedback and is controlled to provide steering feedback with variable stiffness and dynamic properties. The reference model, which calculates the desired value of the torque, is made of power steering torque, damping function torque, torque from tires, locking limit torque, and driver input torque. The model also provides a unique steering dead-band function that is important for on-center feel. A Simulink model of the hardware/software is presented and analysis of the simulator steering system is provided.
Technical Paper

Comparison of ATD to PMHS Response in the Under-Body Blast Environment

2015-11-09
2015-22-0017
A blast buck (Accelerative Loading Fixture, or ALF) was developed for studying underbody blast events in a laboratory-like setting. It was designed to provide a high-magnitude, high-rate, vertical loading environment for cadaver and dummy testing. It consists of a platform with a reinforcing cage that supports adjustable-height rigid seats for two crew positions. The platform has a heavy frame with a deformable floor insert. Fourteen tests were conducted using fourteen PMHS (post mortem human surrogates) and the Hybrid III ATD (Anthropomorphic Test Device). Tests were conducted at two charge levels: enhanced and mild. The surrogates were tested with and without PPE (Personal Protective Equipment), and in two different postures: nominal (knee angle of 90°) and obtuse (knee angle of 120°). The ALF reproduces damage in the PMHS commensurate with injuries experienced in theater, with the most common damage being to the pelvis and ankle.
Journal Article

Comparison of Adult Female and Male PMHS Pelvis and Lumbar Response to Underbody Blast

2024-04-17
2023-22-0003
The goal of this study was to gather and compare kinematic response and injury data on both female and male whole-body Post-mortem Human Surrogates (PMHS) responses to Underbody Blast (UBB) loading. Midsized males (50th percentile, MM) have historically been most used in biomechanical testing and were the focus of the Warrior Injury Assessment Manikin (WIAMan) program, thus this population subgroup was selected to be the baseline for female comparison. Both small female (5th percentile, SF) and large female (75th percentile, LF) PMHS were included in the test series to attempt to discern whether differences between male and female responses were predominantly driven by sex or size. Eleven tests, using 20 whole-body PMHS, were conducted by the research team. Preparation of the rig and execution of the tests took place at the Aberdeen Proving Grounds (APG) in Aberdeen, MD. Two PMHS were used in each test.
Technical Paper

Comparison of Vehicle Structural Integrity and Occupant Injury Potential in Full-frontal and Offset-frontal Crash Tests

2000-03-06
2000-01-0879
The frontal crash standard in the USA specifies that the full front of a vehicle impact a rigid barrier. Subsequently, the European Union developed a frontal crash standard that requires 40 percent of the front of a vehicle to impact a deformable barrier. The present study conducted paired crashes of vehicles using the full-frontal barrier procedure and the 40 percent offset deformable barrier procedure. In part, the study was to examine the feasibility of adding an offset test procedure to the frontal crash standard in the USA. Frontal-offset and full-frontal testing was conducted using both the mid-size (50th percentile male Hybrid III) and the small stature (5th percentile female Hybrid III) dummies. Five vehicle models were used in the testing: Dodge Neon, Toyota Camry, Ford Taurus, Chevrolet Venture and Ford Contour. In the crash tests, all dummies were restrained with the available safety belt systems and frontal air bags.
Technical Paper

Computational Analysis of Head Impact Response Under Car Crash Loadings

1995-11-01
952718
Computational simulations are conducted for several head impact scenarios using a three dimensional finite element model of the human brain in conjunction with accelerometer data taken from crash test data. Accelerometer data from a 3-2-2-2 nine accelerometer array, located in the test dummy headpart, is processed to extract both rotational and translational velocity components at the headpart center of gravity with respect to inertial coordinates. The resulting generalized six degree-of-freedom description of headpart kinematics includes effects of all head impacts with the interior structure, and is used to characterize the momentum field and inertial loads which would be experienced by soft brain tissue under impact conditions. These kinematic descriptions are then applied to a finite element model of the brain to replicate dynamic loading for actual crash test conditions, and responses pertinent to brain injury are analyzed.
Technical Paper

Correlation of a CAE Hood Deflection Prediction Method

2008-04-14
2008-01-0098
As we continue to create ever-lighter road vehicles, the challenge of balancing weight reduction and structural performance also continues. One of the key parts this occurs on is the hood, where lighter materials (e.g. aluminum) have been used. However, the aerodynamic loads, such as hood lift, are essentially unchanged and are driven by the front fascia and front grille size and styling shape. This paper outlines a combination CFD/FEA prediction method for hood deflection performance at high speeds, by using the surface pressures as boundary conditions for a FEA linear static deflection analysis. Additionally, custom post-processing methods were developed to enhance flow analysis and understanding. This enabled the modification of existing test methods to further improve accuracy to real world conditions. The application of these analytical methods and their correlation with experimental results are discussed in this paper.
Technical Paper

Customized Co-Simulation Environment for Autonomous Driving Algorithm Development and Evaluation

2021-04-06
2021-01-0111
Deployment of autonomous vehicles requires an extensive evaluation of developed control, perception, and localization algorithms. Therefore, increasing the implemented SAE level of autonomy in road vehicles requires extensive simulations and verifications in a realistic simulation environment before proving ground and public road testing. The level of detail in the simulation environment helps ensure the safety of a real-world implementation and reduces algorithm development cost by allowing developers to complete most of the validation in the simulation environment. Considering sensors like camera, LiDAR, radar, and V2X used in autonomous vehicles, it is essential to create a simulation environment that can provide these sensor simulations as realistically as possible.
Technical Paper

Deployment of Air Bags into the Thorax of an Out-of-Position Dummy

1999-03-01
1999-01-0764
The air bag has proven effective in reducing fatalities in frontal crashes with estimated decreases ranging from 11% to 30% depending on the size of the vehicle [IIHS-1995, Kahane-1996]. At the same time, some air bag designs have caused fatalities when front-seat passengers have been in close proximity to the deploying air bag [Kleinberger-1997]. The objective of this study was to develop an accurate and repeatable out-of-position test fixture to study the deployment of air bags into out-of-position occupants. Tests were performed with a 5th percentile female Hybrid III dummy and studied air bag loading on the thorax using draft ISO-2 out-of-position (OOP) occupant positioning. Two different interpretations of the ISO-2 positioning were used in this study. The first, termed Nominal ISO-2, placed the chin on the steering wheel with the spine parallel to the steering wheel.
Technical Paper

Derivation and Validation of New Analytical Planar Models for Simulating Multi-Axle Articulated Vehicles

2004-03-08
2004-01-1784
This paper discusses the derivation and validation of planar models of articulated vehicles that were developed to analyze jackknife stability on low-μ surfaces. The equations of motion are rigorously derived using Lagrange's method, then linearized for use in state-space models. The models are verified using TruckSim™, a popular nonlinear solid body vehicle dynamics modeling package. The TruckSim™ models were previously verified using extensive on-vehicle experimental data [1, 2]. A three-axle articulated model is expanded to contain five axles to avoid lumping the parameters for the drive and semitrailer tandems. Compromises inherent in using the linearized models are discussed and evaluated. Finally, a nonlinear tire cornering force model is coupled with the 5-axle model, and its ability to simulate a jackknife event is demonstrated. The model is shown to be valid over a wide range of inputs, up to and including loss of control, on low-and-medium-μ surfaces.
Journal Article

Design Challenges in the Development of a Large Vehicle Inertial Measurement System

2014-04-01
2014-01-0096
The (Vehicle Inertia Parameter Evaluation Rig) VIPER II is a full vehicle mass and inertia parameter measurement machine. The VIPER II expands upon the capabilities of its predecessor and is capable of measuring vehicles with a mass of up to 45,360 kg (100,000 lb), an increase in capacity of 18,100 kg (40,000 lb). The VIPER II also exceeds its predecessor in both the length and width of vehicles it can measure. The VIPER II's maximum vehicle width is 381 cm (150 in) an increase of 76 cm (30 in) and maximum distance from the vehicle CG to the outer most axle is 648 cm (255 in) an additional 152 cm (60 in) The VIPER II is capable of performing measurements including vehicle CG height, pitch, roll, and yaw moments of inertia and the roll/yaw cross product of inertia. While being able to measure both heavier and larger vehicles, the VIPER II is designed to maintain a maximum error of 3% for all inertia measurements and 1% for CG height.
Technical Paper

Design and Development of a Thor-Based Small Female Crash Test Dummy

2003-10-27
2003-22-0024
This paper describes the design and development of a small female crash test dummy, results of biofidelity tests, and preliminary results from full-scale, 3-point belt and airbag type sled tests. The small female THOR was designed using the anthropometric data developed by Robbins for the 5th percentile female and biomechanical requirements derived from scaling the responses of the 50th percentile male. While many of the mechanical components of the NHTSA THOR 50th percentile male dummy were scaled according to the appropriate anthropometric data, a number of improved design features have been introduced in the new female THOR. These include; improved neck design, new designs for the head and neck skins: and new designs for the upper and lower abdomen. The lower leg, ankle and foot, known as THOR-FLx, were developed in an earlier effort and have been included as a standard part of the new female dummy.
Technical Paper

Design of Temperature Insensitive Ribs for Crash Test Dummies

2003-03-03
2003-01-0502
The Isodamp damping material (also known as Navy Damp) used in the ribs of current crash test dummies provides human-like damping to the thorax under impact. However, the range of temperature over which it can be used is very small. A new rib design using laminates of steel, fiberglass, and commercially available viscoelastic material has been constructed. Load-deflection response and hysteresis of the laminated ribs were compared with corresponding conventional ribs fabricated from steel and Isodamp. Impact tests were conducted on laminated and conventional ribs at 18.5° C, 22.2° C and 26.6° C. Results indicate that the response of the laminated ribs is essentially the same as that of the ribs with Isodamp at 22.2° C, which is the operating temperature of the conventional ribs. The variation in the impact response of the newly developed laminated ribs in the temperature range of 18.5° C to 26.6° C was less than 10%.
X