Refine Your Search

Topic

Author

Search Results

Technical Paper

1974 Accident Experience with Air Cushion Restraint Systems

1975-02-01
750190
An air cushion restraint system has been available to the public on certain model passenger cars since January 1974. In response to this opportunity to obtain field experience, the National Highway Traffic Safety Administration has established a nationwide reporting network and investigative capability for accidents involving air-bag equipped cars. The reporting criteria for accidents require that the car be towed as a result of the accident, or that a front-seat occupant was injured, or that bag deployment occurred. The principal objective is to obtain the injury-reducing effectiveness of this restraint system in the total accident environment. This environment encompasses “towaway” accidents resulting in bag deployment and non-deployment. Definitive results are expected at the conclusion of the study. This paper summarizes the experience during the first year of the program, during which time the rate of accident occurrence was far less than originally expected.
Technical Paper

Air Bags - Legions of Fable - Consumer Perceptions and Concerns

1998-02-23
980905
This paper discusses the consumer and news media perceptions about air bags that had to be taken into account by the National Highway Traffic Safety Administration in making rulemaking decisions in 1997. Addressing these perceptions was a major concern as the agency made preparations to allow identifiable groups of people at risk from an air bag deployments to have on-off switches installed in their vehicles.
Technical Paper

Air Bags for Small Cars

1985-04-01
851200
The National Highway Traffic Safety Administration (NHTSA) has conducted a number of research projects which examined the need and concern for occupants of small cars. These projects include the demonstration of air bags in small cars at crash severities equal to or greater than the 30 mph test required by Federal Motor Vehicle Safety Standards (FMVSS) 208. The results from these projects showing the protective capability of the air bag are reviewed. Factors influencing air bag performance such as amount of vehicle crush and the time available for air bag inflation are examined. Existing technology for providing air bag protection to occupants in small cars is discussed. The issue concerning the safety of out-of-position child passengers is addressed including a number of technical options for dealing with the out-of-position occupant.
Technical Paper

Air bag crash investigations

2001-06-04
2001-06-0009
The performance of air bags, as an occupant protection system, is of high interest to the National Highway Traffic Safety Administration (NHTSA or Agency). Since 1972, the NHTSA has operated a Special Crash Investigations (SCI) program which provides in-depth crash investigation data on new and rapidly changing occupant protection technologies in real-world crashes. The Agency uses these in-depth data to evaluate vehicle safety systems and form a basis for rulemaking actions. The data are also used by the automotive industry and other organizations to evaluate the performance of motor vehicle occupant protection systems such as air bags. This paper presents information from NHTSA's SCI program concerning crash investigations on air-bag-equipped vehicles. The paper focus is on data collection and some general findings in air bag crash investigations including: air-bag-related fatal and life-threatening injuries; side air bags; redesigned air bags and advanced air bags.
Technical Paper

Characterization of Vehicle Occupant Compartment Material Properties Using MADYMO: Methodology and Validation

2009-06-09
2009-01-2260
During a motor-vehicle collision, an occupant may interact with a variety of interior structures. The material properties and construction of these structures can directly affect the occupant's kinetic response. Simulation tools such as MADYMO (Mathematical Dynamical Models) can be used to estimate the forces imparted to an occupant for injury mechanism and causation evaluation relative to a particular event. Depending on the impact event and the specific injury mechanism being evaluated, the selection of proper material characteristics can be quite important. A comprehensive literature review of MADYMO studies illustrates the prevalent use of generic material characteristics and the need for improved property estimation and implementation methods.
Technical Paper

Comparison of ATD to PMHS Response in the Under-Body Blast Environment

2015-11-09
2015-22-0017
A blast buck (Accelerative Loading Fixture, or ALF) was developed for studying underbody blast events in a laboratory-like setting. It was designed to provide a high-magnitude, high-rate, vertical loading environment for cadaver and dummy testing. It consists of a platform with a reinforcing cage that supports adjustable-height rigid seats for two crew positions. The platform has a heavy frame with a deformable floor insert. Fourteen tests were conducted using fourteen PMHS (post mortem human surrogates) and the Hybrid III ATD (Anthropomorphic Test Device). Tests were conducted at two charge levels: enhanced and mild. The surrogates were tested with and without PPE (Personal Protective Equipment), and in two different postures: nominal (knee angle of 90°) and obtuse (knee angle of 120°). The ALF reproduces damage in the PMHS commensurate with injuries experienced in theater, with the most common damage being to the pelvis and ankle.
Technical Paper

Comparison of Collision and Noncollision Marks on Vehicle Restraint Systems

2008-04-14
2008-01-0160
Markings or observable anomalies on vehicle seat belt restraint systems can be classified into two categories: (1) Those caused by collision forces, or “loading marks” and (2) those created by noncollision situations, or “normal usage marks” [1]. A survey was conducted of both crash tested and non-crash tested vehicles in order to collect data on both categories of markings. This paper examines and analyzes the markings caused by both collision and noncollision load scenarios in order to illustrate and evaluate their unique differences as well as provide a general pattern of severity relative to different loading conditions.
Technical Paper

Comparison of Vehicle Structural Integrity and Occupant Injury Potential in Full-frontal and Offset-frontal Crash Tests

2000-03-06
2000-01-0879
The frontal crash standard in the USA specifies that the full front of a vehicle impact a rigid barrier. Subsequently, the European Union developed a frontal crash standard that requires 40 percent of the front of a vehicle to impact a deformable barrier. The present study conducted paired crashes of vehicles using the full-frontal barrier procedure and the 40 percent offset deformable barrier procedure. In part, the study was to examine the feasibility of adding an offset test procedure to the frontal crash standard in the USA. Frontal-offset and full-frontal testing was conducted using both the mid-size (50th percentile male Hybrid III) and the small stature (5th percentile female Hybrid III) dummies. Five vehicle models were used in the testing: Dodge Neon, Toyota Camry, Ford Taurus, Chevrolet Venture and Ford Contour. In the crash tests, all dummies were restrained with the available safety belt systems and frontal air bags.
Technical Paper

Compatibility Between Vehicle Seating Environments and Load Legs on Child Restraint Systems (CRS)

2024-04-09
2024-01-2751
Load legs on child restraint systems (CRS) protect pediatric occupants by bracing the CRS against the floor of the vehicle. Load legs reduce forward motion and help manage the energy of the CRS during a crash. As more CRS manufacturers in the United States (US) consider incorporating these safety features into their products, benchmark data are needed to guide their design and usage. The objective of this study is to develop benchmark geometrical data from both CRS and vehicle environments to help manufacturers to incorporate compatible load legs into the US market. A sample of vehicle environments (n=104 seating positions from n=51 vehicles, model years 2015 to 2022) and CRS with load legs (n=10) were surveyed. Relevant measurements were taken from each sample set to compile benchmark datasets. Corresponding dimensions were compared to assess where incompatibilities might occur.
Technical Paper

Delta-V, Barrier Equivalent Velocity and Acceleration Pulse of a Vehicle During an Impact

2005-04-11
2005-01-1187
Delta-V and Barrier Equivalent Velocity (BEV) are terms that have been used for many years to describe aspects of what happened to a vehicle when an impact occurred. That is, they are used to describe some physical change in the vehicle state before the impact as compared to after the impact. Specifically, the Delta-V describes the change in the vehicle velocity vector from just before the impact until just after the impact. The BEV attempts to quantify the energy required to cause the damage associated with an impact. In order to understand what happens to a vehicle and its occupants during an impact, it is necessary to examine the acceleration pulse undergone by the vehicle during the impact. The acceleration pulse describes, in detail, how the Delta-V occurs as a function of time, and is related with the deformation of the vehicle as well as the object contacted by the vehicle during an impact.
Technical Paper

Deployment of Air Bags into the Thorax of an Out-of-Position Dummy

1999-03-01
1999-01-0764
The air bag has proven effective in reducing fatalities in frontal crashes with estimated decreases ranging from 11% to 30% depending on the size of the vehicle [IIHS-1995, Kahane-1996]. At the same time, some air bag designs have caused fatalities when front-seat passengers have been in close proximity to the deploying air bag [Kleinberger-1997]. The objective of this study was to develop an accurate and repeatable out-of-position test fixture to study the deployment of air bags into out-of-position occupants. Tests were performed with a 5th percentile female Hybrid III dummy and studied air bag loading on the thorax using draft ISO-2 out-of-position (OOP) occupant positioning. Two different interpretations of the ISO-2 positioning were used in this study. The first, termed Nominal ISO-2, placed the chin on the steering wheel with the spine parallel to the steering wheel.
Technical Paper

Design and Development of a Thor-Based Small Female Crash Test Dummy

2003-10-27
2003-22-0024
This paper describes the design and development of a small female crash test dummy, results of biofidelity tests, and preliminary results from full-scale, 3-point belt and airbag type sled tests. The small female THOR was designed using the anthropometric data developed by Robbins for the 5th percentile female and biomechanical requirements derived from scaling the responses of the 50th percentile male. While many of the mechanical components of the NHTSA THOR 50th percentile male dummy were scaled according to the appropriate anthropometric data, a number of improved design features have been introduced in the new female THOR. These include; improved neck design, new designs for the head and neck skins: and new designs for the upper and lower abdomen. The lower leg, ankle and foot, known as THOR-FLx, were developed in an earlier effort and have been included as a standard part of the new female dummy.
Technical Paper

Development of an Advanced ATD Thorax System for Improved Injury Assessment in Frontal Crash Environments

1992-11-01
922520
Injuries to the thorax and abdomen comprise a significant percentage of all occupant injuries in motor vehicle accidents. While the percentage of internal chest injuries is reduced for restrained front-seat occupants in frontal crashes, serious skeletal chest injuries and abdominal injuries can still result from interaction with steering wheels and restraint systems. This paper describes the design and performance of prototype components for the chest, abdomen, spine, and shoulders of the Hybrid III dummy that are under development to improve the capability of the Hybrid III frontal crash dummy with regard to restraint-system interaction and injury-sensing capability.
Technical Paper

Evaluation of Child Safety Seats Based on Sled Tests

1987-11-01
872210
The injury reducing effectiveness of child safety seats in frontal crashes was evaluated, based on 36 frontal or oblique sled tests run with two or more GM three-year-old dummies in the simulated passenger compartment of a car. Unrestrained, correctly restrained and incorrectly restrained dummies were tested at the range of speeds where most nonminor injuries occur (15-35 mph). Accident data from NHTSA files were used to calibrate a relationship between the front-seat unrestrained dummies' HIC and unrestrained children's risk of serious head injuries; also between torso g's and the risk of serious torso injuries. These relationships were used to predict injury risk for the restrained children as a function of crash speed and to compare it to the risk for unrestrained children. The sled test analysis predicted that the 1984 mix of correctly and incorrectly used safety seats reduced serious injury risk by 40 percent relative to the unrestrained child, in frontal crashes.
Technical Paper

Evaluation of a Proposed Hybrid III Hip Modification

1995-11-01
952730
A proposed modification to the Hybrid III 50th percentile male dummy upper femur appears to reduce the chest response problems resulting from femur-pelvis interaction in test exposures more severe than Standard No. 208 testing. When compared to overall repeatability of tests, the modification did not change other dummy response measurements appreciably. The femur-pelvis interaction problem, referred to as “hip lock”, was thought to occur in certain vehicles when the femurs of a passenger side dummy impacting only an air bag bottomed out against the pelvis structure. If metal-to-metal contact occurred, excessive load could be transferred to the chest, leading to elevated chest responses. The most pertinent signs of hip lock occurring appear to be a large, sharply pointed z chest acceleration, and a distinct positive component of the lumbar spine z force following the main negative component.
Technical Paper

Evaluation of injury risk from side impact air bags

2001-06-04
2001-06-0091
Several thoracic and head protection side impact air bag systems (SAB) are emerging in the U.S. market and are projected to become prevalent in the fleet. These systems appear to offer superior protection in side crashes. However, concerns have been raised as to their potential for causing injury to out-of-position (OOP) occupants. This paper describes the National Highway Traffic Safety Administration (NHTSA) program for evaluation of the SAB systems for OOP occupants and provides a status report on the current research. The industry's Side Airbag Out-of- Position Injury Technical Working Group (TWG) recommended procedures for 3-year-old and 6-year-old occupants are evaluated. Additional test procedures are described to augment the TWG procedures for these occupants and 12-month- old infants.
Technical Paper

Evaluation of the Effectiveness of Child Safety Seats in Actual Use

1983-10-17
831656
A comprehensive review of casualty-reducing effectiveness estimates of child safety seats in actual use, obtained by statistical analyses of highway accident data. Recent analyses of large samples of New York and Maryland accidents show statistically significant injury reductions for child safety seats; so does a new analysis of the National Highway Traffic Safety Administration's accident files. Results from Washington State, Tennessee, New Jersey, and Idaho are also reviewed, as are Nationwide restraint usage and fatality trends. The findings are critically examined for possible data biases. It is concluded that child safety seats definitely reduce deaths and injuries in highway crashes, but that their effectiveness cannot be accurately estimated at this time because of inconsistencies and possible biases in the various studies.
Technical Paper

Evaluation of the Kinematic Responses and Potential Injury Mechanisms of the Jejunum during Seatbelt Loading

2015-11-09
2015-22-0009
High-speed biplane x-ray was used to research the kinematics of the small intestine in response to seatbelt loading. Six driver-side 3-point seatbelt simulations were conducted with the lap belt routed superior to the pelvis of six unembalmed human cadavers. Testing was conducted with each cadaver perfused, ventilated, and positioned in a fixed-back configuration with the spine angled 30° from the vertical axis. Four tests were conducted with the cadavers in an inverted position, and two tests were conducted with the cadavers upright. The jejunum was instrumented with radiopaque markers using a minimally-invasive, intraluminal approach without inducing preparation-related damage to the small intestine. Tests were conducted at a target peak lap belt speed of 3 m/s, resulting in peak lap belt loads ranging from 5.4-7.9 kN. Displacement of the radiopaque markers was recorded using high-speed x-ray from two perspectives.
Technical Paper

Fatality and injury Reducing Effectiveness of Lap Belts for Back Seat Occupants

1987-02-23
870486
The fatality and injury reducing effectiveness of Tap belts for back seat occupants is estimated by applying the double pair comparison method to 1975-86 Fatal Accident Reporting System and 1982-85 Pennsylvania accident data. Lap belts significantly reduce the risk of fatalities by 17-26 percent, serious injuries by 37 percent, moderate to serious injuries by 33 percent and injuries of any severity by 11 percent, relative to the unrestrained back seat occupant. Lap belts are primarily effective in nonfrontal crashes because the unrestrained back seat occupant is already well protected in frontals. Lap belted occupants have lower head injury risk but higher torso injury risk than unrestrained back seat occupants. This paper presents the views of the author and not necessarily those of the National Highway Traffic Safety Administration (NHTSA).
Technical Paper

Frontal Air Bag Deployment in Side Crashes

1998-02-23
980910
NHTSA conducted seventy-six side impact FMVSS No. 214 compliance tests from 1994 through 1997. The compliance tests are nearly right angle side impacts with low longitudinal components of change of velocity (Δv). Frontal air bag deployments were found to have occurred for 34% of the driver bags and 32% of the front passenger bags in these compliance-tested passenger cars. In 1997, NHTSA began testing passenger cars 'in side impact in the New Car Assessment Program (NCAP). The NCAP crash tests are conducted at a higher speed than the compliance tests. The cars in the NCAP side impact tests also had low longitudinal components of Δv. Approximately 40% of the twenty-six passenger cars tested in the 1997 Side Impact NCAP had their frontal air bags deploy. Real world crash data were examined to determine if frontal air bags are deploying in right angle side impacts on the roads of the US.
X