Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

A Computational Approach for Evaluating the Acoustic Detection of a Military Vehicle

2005-05-16
2005-01-2337
ADRPM (Acoustic Detection Range Prediction Model) is a software program that models the propagation of acoustic energy through the atmosphere and evaluates detectable distance. ADRPM predicts the distance of detection for a noise source based on the acoustic signature of the source. The acoustic signature of a vehicle is computed by combining BEA and EBEA computations with nearfield measurements. The computed signature is utilized as the input to ADRPM. Once the initial detection range is predicted the main contributors to the acoustic detection are identified by ADRPM and their location on the vehicle is modified in order to assess the corresponding effect to the detectable distance of the vehicle.
Technical Paper

A Design Study to Determine the Impact of Various Parameters on Door Acoustics

2003-05-05
2003-01-1430
Once the design of a door sheetmetal and accessories is confirmed, the acoustics of the door system depends on the sound package assembly. This essentially consists of a watershield which acts as a barrier and a porous material which acts as an absorber. The acoustical performance of the watershield and the reverberant sound build-up in the door cavity control the performance. This paper discusses the findings of a design study that was developed based on design of experiments (DOE) concepts to determine which parameters of the door sound package assembly are important to the door acoustics. The study was based on conducting a minimum number of tests on a five factor - two level design that covered over 16 different design configurations. In addition, other measurements were made that aided in developing a SEA model which is also compared with the findings of the results of the design study.
Technical Paper

Accounting for Manufacturing Variability in Interior Noise Computations

2001-04-30
2001-01-1527
A formulation that accounts for manufacturing variability in the analysis of structural/acoustic systems is presented. The methodology incorporates the concept of fast probability integration with finite element (FEA) and boundary element analysis (BEA) for producing the probabilistic acoustic response of a structural/acoustic system. The advanced mean value method is used for integrating the system probability density function. FEA and BEA are combined for producing the acoustic response that constitutes the performance function. The probabilistic acoustic response is calculated in terms of a cumulative distribution function. The new methodology is used to illustrate the difference between the results from a probabilistic analysis that accounts for manufacturing uncertainty, and an equivalent deterministic simulation through applications. The probabilistic computations are validated by comparison to Monte Carlo simulations.
Technical Paper

Integration of Finite Element and Boundary Element Methods for Simulating the Noise Radiated From a Flexible Panel Subjected to Boundary Layer Excitation

1999-05-17
1999-01-1795
In this paper an algorithm is developed for combining finite element analysis and boundary element techniques in order to compute the noise radiated from a panel subjected to boundary layer loading. The excitation is presented in terms of the auto and cross power spectral densities of the fluctuating wall pressure. The structural finite element model for the panel is divided into a number of sub-panels. A uniform fluctuating pressure is applied as excitation on each sub-panel separately. The corresponding vibration is computed, and is utilized as excitation for an acoustic boundary element analysis. The acoustic response is computed at any data recovery point of interest. The relationships between the acoustic response and the pressure excitation applied at each particular sub-panel constitute a set of transfer functions.
Technical Paper

Structure Borne Insertion Loss of Sound Package Components

2003-05-05
2003-01-1549
Typical automotive sound package components are usually characterized by their absorption coefficients and their acoustic power-based insertion loss. This insertion loss (IL) is usually obtained by subtracting the transmission loss (TL) of a bare flat steel plate from the TL of the same plate covered with the trim material. While providing useful information regarding the performance of the component, air-borne insertion loss is based solely on acoustic excitations and thus provides very little information about the structure-borne performance of the component. This paper presents an attempt to introduce a standard procedure to define the power-based structure-borne insertion loss of sound package components. A flat steel plate is excited mechanically using a shaker. Different carpet constructions are applied on the plate and tested. Based on velocity measurements, a force transducer and intensity probe, the mechanical input and the acoustic radiated power are obtained.
Technical Paper

Test Methodology to Reduce Axle Whine in a 4WD Vehicle

2005-05-16
2005-01-2403
With the ever increasing popularity of SUV automobiles, studies involving driveline specific problems have grown. One prevalent NVH problem is axle whine associated with the assembled motion transmission error (MTE) of an axle system and the corresponding vibration/acoustic transfer paths into the vehicle. This phenomenon can result in objectionable noise levels in the passenger compartment, ensuing in customer complaints. This work explores the methodology and test methods used to diagnose and solve a field axle whine problem, including the use of cab mount motion transmissibility path analysis, running modes and a detailed MTE best-of-the-best (BOB)/worst-of-the-worst (WOW) study. The in-vehicle axle whine baseline measurements including both vehicle dynamometer and on-road test conditions, along with the countermeasures of axle whine fixes are identified and presented in this paper.
Technical Paper

The Effect of Length on the Acoustic Attenuation Performance of Concentric Expansion Chambers: An Analytical, Computational, and Experimental Investigation

1995-02-01
950544
Expansion chambers are widely used in the breathing systems of engines due to their desirable broadband noise attenuation characteristics. Following an earlier analytical and computational work of Sahasrabudhe et al. (1992), the present study investigates the effect of the length on the acoustic attenuation performance of concentric expansion chambers. Three approaches are employed to determine the transmission loss: (1) a two-dimensional, axisymmetric analytical solution; (2) a three-dimensional computational solution based on the boundary element method; and (3) experiments on an extended impedance tube setup with nine expansion chambers fabricated with fixed inlet and outlet ducts, fixed chamber diameters, and varying chamber length to diameter ratios from to 3.53. The results from all three approaches are shown to agree well. The effect of multi-dimensional propagation is discussed in comparison with the classical treatment for the breakdown of planar waves.
Technical Paper

The Effect of Vehicle Exhaust System Components on Flow Losses and Noise in Firing Spark-Ignition Engines

1995-05-01
951260
Sound attenuation and flow loss reduction are often two competing demands in vehicle breathing systems. The present study considers a full vehicle exhaust system and investigates both the sound attenuation and the flow performance of production configurations including the catalyst, the resonator, and the muffler. Dynamometer experiments have been conducted with a firing Ford 3.0L, V-6 engine at wide-open throttle with speeds ranging from 1000 to 5000 rpm. Measurements including the flow rates, the temperatures and the absolute dynamic pressures of the hot exhaust gases at key locations (upstream and downstream of every component) with fast-response, water-cooled piezo-resistive pressure transducers facilitate the calculation of acoustic performance of each component, as well as the determination of flow losses caused by these elements and their influence on the engine performance.
Technical Paper

Understanding Laboratory Versus In-Vehicle Performance of Sprayable and Sheet Applied Damping Materials

2001-04-30
2001-01-1465
Liquid spray applied damping materials have potential advantages over conventional sheet damping materials in automotive body panel vibration applications. In order to understand the acoustical impact, a laboratory based NVH study was conducted to compare the damping and stiffness performance characteristics of various sprayable damping materials versus the production damping treatment. Based on this comparison, a criteria was developed to select potentially viable sprayable damping materials for vehicle testing. In-vehicle tests were also performed and compared to the laboratory findings to understand how well the results correlate. This paper discusses a criteria for selecting sprayable damping materials based on bench-top tests for vehicle applications, and the potential benefits of sprayable materials.
Technical Paper

Validation of Vehicle NVH Performance using Experimental Modal Testing and In-Vehicle Dynamic Measurements

2007-05-15
2007-01-2320
NVH targets for future vehicles are often defined by utilizing a competitive benchmarking vehicle in conjunction with an existing production and/or reference vehicle. Mode management of full vehicle modes is one of the most effective and significant NVH strategies to achieve such targets. NVH dynamic characteristics of a full vehicle can be assessed and quantified through experimental modal testing for determination of global body mode resonance frequency, damping property, and mode shape. Major body modes identified from full vehicle modal testing are primarily dominated by the vehicle's body-in-white structure. Therefore, an estimate of BIW modes from full vehicle modes becomes essential, when only full vehicle modes from experimental modal testing exist. Establishing BIW targets for future vehicles confines the fundamental NVH behavior of the full vehicle.
X