Refine Your Search

Topic

Search Results

Technical Paper

A Control Allocation Strategy for Electric Vehicles with In-wheel Motors and Hydraulic Brake System

2015-04-14
2015-01-1600
Distributed drive electric vehicle (EV) is driven by four independent hub motors mounted directly in wheels and retains traditional hydraulic brake system. So it can quickly produce driving/braking motor torque and large stable hydraulic braking force. In this paper a new control allocation strategy for distributed drive electric vehicle is proposed to improve vehicle's lateral stability performance. It exploits the quick response of motor torque and controllable hydraulic pressure of the hydraulic brake system. The allocation strategy consists of two sections. The first section uses an optimal allocation controller to calculate the total longitudinal force of each wheel. In the controller, a dynamic efficiency matrix is designed via local linearization to improve lateral stability control performance, as it considers the influence of tire coupling characteristics over yaw moment control in extreme situations.
Technical Paper

A Steerable Curvature Approach for Efficient Executable Path Planning for on-Road Autonomous Vehicle

2019-04-02
2019-01-0675
A rapid path-planning algorithm that generates drivable paths for an autonomous vehicle operating in structural road is proposed in this paper. Cubic B-spline curve is adopted to generating smooth path for continuous curvature and, more, parametric basic points of the spline is adjusted to controlling the curvature extremum for kinematic constraints on vehicle. Other than previous approaches such as inverse kinematics, model-based prediction postprocess approach or closed-loop forward simulation, using the kinematics model in each iteration of path for smoothing and controlling curvature leading to time consumption increasing, our method characterized the vehicle curvature constraint by the minimum length of segment line, which synchronously realized constraint and smooth for generating path. And Differ from the path of robot escaping from a maze, the intelligent vehicle traveling on road in structured environments needs to meet the traffic rules.
Technical Paper

An Anti-Lock Braking Control Strategy for 4WD Electric Vehicle Based on Variable Structure Control

2013-04-08
2013-01-0717
Based on the four-wheel-drive electric vehicle (4WD EV), a variable structure control (VSC) strategy is designed in this paper for the anti-lock braking control. With nonpeak friction coefficient as target, sign judgment method of switch function in this VSC strategy is improved and a new control algorithm is proposed. The improved VSC strategy is made robust to the parameters of the algorithm and verified by the computer simulation as well as the hard-in-loop test. The results show that the slip rate can be controlled to a point in the stable area near the optimal slip ratio and the control strategy can effectively realize the anti-lock braking control.
Technical Paper

An Integrated-Electro-Hydraulic Brake System for Active Safety

2016-04-05
2016-01-1640
An integrated-electro-hydraulic brake system (I-EHB) is presented to fulfill the requirements of active safety. Because I-EHB can control the brake pressure accurately and fast. Furthermore I-EHB is a decoupled system, so it could make the maximum regenerative braking while offers the same brake pedal feeling and also good for ADAS and unmanned driving application. Based on the analysis of current electrohydraulic brake systems, regulation requirements and the requirements for brake system, the operating mode requirements of I-EHB are formed. Furthermore, system topological structure and a conceptual design are proposed. After the selection of key components, the parameter design is accomplished by modeling the system. According to the above-mentioned design method, an I-EHB prototype and test rig is made. Through the test rig, characteristics of the system are tested. Results show that this I-EHB system responded rapidly.
Technical Paper

An Interactive Car-Following Model (ICFM) for the Harmony-With-Traffic Evaluation of Autonomous Vehicles

2023-04-11
2023-01-0822
Harmony-with-traffic refers to the ability of autonomous vehicles to maximize the driving benefits such as comfort, efficiency, and energy consumption of themselves and the surrounding traffic during interactive driving under traffic rules. In the test of harmony-with-traffic, one or more background vehicles that can respond to the driving behavior of the vehicle under test are required. For this purpose, the functional requirements of car-following model for harmony-with-traffic evaluation are analyzed from the dimensions of test conditions, constraints, steady state and dynamic response. Based on them, an interactive car-following model (ICFM) is developed. In this model, the concept of equivalent distance is proposed to transfer lateral influence to longitudinal. The calculation methods of expected speed are designed according to the different car-following modes divided by interaction object, reaction distance and equivalent distance.
Journal Article

Anti-Lock Braking System Control Design on An Integrated-Electro-Hydraulic Braking System

2017-03-28
2017-01-1578
Two control strategies, safety preferred control and master cylinder oscillation control, were designed for anti-lock braking on a novel integrated-electro-hydraulic braking system (I-EHB) which has only four solenoid valves in its innovative hydraulic control unit (HCU) instead of eight in a traditional one. The main idea of safety preferred control is to reduce the hydraulic pressure provided by the motor in the master cylinder whenever a wheel tends to be locking even if some of the other wheels may need more braking torque. In contrast, regarding master cylinder oscillation control, a sinusoidal signal is given to the motor making the hydraulic pressure in the master cylinder oscillate in certain frequency and amplitude. Hardware-in-the-loop simulations were conducted to verify the effectiveness of the two control strategies mentioned above and to evaluate them.
Technical Paper

Braking Pressure Tracking Control of a Pressure Sensor Unequipped Electro-Hydraulic Booster Based on a Nonlinear Observer

2018-04-03
2018-01-0581
BBW (Brake-by-wire) can increase the vehicle safety performance due to high control accuracy and fast response speed. As one solution of BBW, the novel Integrated-electro-hydraulic brake system (I-EHB) is proposed, which consists of electro-hydraulic booster and hydraulic pressure control unit. The electro-hydraulic booster is activated by an electric motor that driving linear motion mechanism to directly produce the master cylinder pressure. With electro-hydraulic booster as an actuator, the hydraulic pressure control problem is a key issue. Most literatures deal with the pressure control issue based on the feedback pressure signal measured by pressure sensor. As far as the authors are aware, none of the proposed techniques takes into account the pressure sensor unequipped BBW. In this paper, there is no pressure feedback signal, but there is only position feedback signal measured by position sensor for control law design.
Technical Paper

Control of Novel Integrated-Electro-Hydraulic Brake System for Automotive

2015-09-27
2015-01-2699
With the electrification and intelligentialization of vehicle, requirements on more intelligent and integrated brake system are put forward. A novel integrated-electro-hydraulic brake system (I-EHB) for automotive is presented to fulfill these requirements. I-EHB is consisted of active power source (APS), pedal feel emulator (PFE), electro control unit (ECU) and hydraulic control unit (HCU). The system characteristics of I-EHB are tested through test rig. According to characteristics experiments, friction and non-linear phenomena in hydraulic pressure control are found. In order to overcome these phenomena in control of I-EHB, chatter-compensation is adopted based on experiment analysis. Algorithm are tested and optimized through test rig. As a result, through chatter-compensation the hydraulic pressure is controlled accurately and chatter-compensation is optimized for different working conditions.
Technical Paper

Decision-Making for Intelligent Vehicle Considering Uncertainty of Road Adhesion Coefficient Estimation: Autonomous Emergency Braking Case

2020-10-29
2020-01-5109
Since data processing methods could not completely eliminate the uncertainty of signals, it is a key issue for stable and robust decision-making for uncertainty tolerance of intelligent vehicles. In this paper, a decision-making for an Autonomous Emergency Braking (AEB) case considering the uncertainty of road adhesion coefficient estimation (RACE) is proposed. Firstly, the 3σ criterion is employed to classify the confidence in order to establish the decision-making mechanism considering the signal uncertainty of RACE. Secondly, the model for AEB with the uncertainty of the road adhesion coefficient estimated is designed based on the Seungwuk Moon model. Thirdly, a CCRs and CCRm scenario was designed to verify the feasibility in reference to the European New Car Assessment Programme (Euro NCAP) standard. Finally, the results of 10,000 cycles test illustrate that the proposed method is stable and could significantly improve the safety confidence both in the CCRs and CCRm scenarios.
Journal Article

Differential Drive Assisted Steering Control for an In-wheel Motor Electric Vehicle

2015-04-14
2015-01-1599
For an electric vehicle driven by four in-wheel motors, the torque of each wheel can be controlled precisely and independently. A closed-loop control method of differential drive assisted steering (DDAS) has been proposed to improve vehicle steering properties based on those advantages. With consideration of acceleration requirement, a three dimensional characteristic curve that indicates the relation between torque and angle of the steering wheel at different vehicle speeds was designed as a basis of the control system. In order to deal with the saturation of motor's output torque under certain conditions, an anti-windup PI control algorithm was designed. Simulations and vehicle tests, including pivot steering test, lemniscate test and central steering test were carried out to verify the performance of the DDAS in steering portability and road feeling.
Technical Paper

Distributed Drive Electric Vehicle Longitudinal Velocity Estimation with Adaptive Kalman Filter: Theory and Experiment

2019-04-02
2019-01-0439
Velocity is one of the most important inputs of active safety systems such as ABS, TCS, ESC, ACC, AEB et al. In a distributed drive electric vehicle equipped with four in-wheel motors, velocity is hard to obtain due to all-wheel drive, especially in wheel slipping conditions. This paper focus on longitudinal velocity estimation of the distributed drive electric vehicle. Firstly, a basic longitudinal velocity estimation method is built based on a typical Kalman filter, where four wheel speeds obtained by wheel speed sensors constitute an observation variable and the longitudinal acceleration measured by an inertia moment unit is chosen as input variable. In simulations, the typical Kalman filter show good results when no wheel slips; when one or more wheels slip, the typical Kalman filter with constant covariance matrices does not work well. Therefore, a gain matrix adjusting Kalman filter which can detect the wheel slip and cope with that is proposed.
Technical Paper

Efficient Trajectory Planning for Tractor-Trailer Vehicles with an Incremental Optimization Solving Algorithm

2022-03-29
2022-01-0138
A tractor-trailer vehicle (TTV) consists of an actuated tractor attached with several full trailers. Because of its nonlinear and noncompleted constraints, it is a challenging task to avoid collisions for path planner. In this paper, we propose an efficient method to plan an optimal trajectory for TTV to reach the destination without any collision. To deal with the complicated constraints, the trajectory planning problem is formulated as an optimal control problem uniformly, which can be solved by the interior point method. A novel incremental optimization solving algorithm (IOSA) is proposed to accelerate the optimization process, which makes the number of trailers and the size of obstacles increase asynchronously. Simulation experiments are carried out in two scenarios with static obstacles. Compared with other methods, the results show that the planning method with IOSA outperforms in the efficiency.
Technical Paper

Electro-Hydraulic Composite Braking Control Optimization for Front-Wheel-Driven Electric Vehicles Equipped with Integrated Electro-Hydraulic Braking System

2023-11-05
2023-01-1864
With the development of brake-by-wire technology, electro-hydraulic composite braking technology came into being. This technology distributes the total braking force demand into motor regenerative braking force and hydraulic braking force, and can achieve a high energy recovery rate. The existing composite braking control belongs to single-channel control, i.e., the four wheel braking pressures are always the same, so the hydraulic braking force distribution relationship of the front and rear wheels does not change. For single-axle-driven electric vehicles, the additional regenerative braking force on the driven wheels will destroy the original braking force distribution relationship, resulting in reduced braking efficiency of the driven wheels, which are much easier to lock under poor road adhesion conditions.
Technical Paper

Hydraulic Control of Integrated Electronic Hydraulic Brake System Based on LuGre Friction Model

2017-09-17
2017-01-2513
In this paper, an integrated electronic hydraulic brake(I-EHB) system is introduced, which is mainly composed of a motor, a worm gear, a worm, a gear, a rack etc. The friction leads the system to the creeping phenomenon and the dead zone. These phenomenon seriously affect the response speed and the hydraulic pressure control .In order to realize the accurate hydraulic pressure control of I-EHB system, a new friction compensation control method is proposed based on LuGre dynamic friction model. And the theoretical design of adaptive control method is designed based on the feedback of the master cylinder pressure and the operating state of the system. Then the stability of the control method is proved by Lyapunov theorem. A co-simulation model is built with Matlab/Simulink and AMESim, so as to prove the validity of the control method.
Technical Paper

Hydraulic Control of Integrated Electronic Hydraulic Brake System based on Command Feed-Forward

2016-04-05
2016-01-1658
With the development of vehicle electrification, electronic hydraulic brake system is gradually applied. Many companies have introduced products related to integrated electronic hydraulic brake system (I-EHB). In this paper, an I-EHB system is introduced, which uses the motor to drive the reduction mechanism as a power source for braking. The reduction mechanism is composed of a turbine, a worm, a gear and a rack. A control method based on command feed-forward is proposed to improve the hydraulic pressure control of I-EHB. Based on previous research, we simplify the system to first order system, and the theoretical design of the command feed-forward compensator is carried out. The feed-forward controller is applied, including the velocity feed-forward and the acceleration feed-forward, to improve the response speed and tracking effect of the system.
Technical Paper

IMM-KF Algorithm for Multitarget Tracking of On-Road Vehicle

2020-04-14
2020-01-0117
Tracking vehicle trajectories is essential for autonomous vehicles and advanced driver-assistance systems to understand traffic environment and evaluate collision risk. In order to reduce the position deviation and fluctuation of tracking on-road vehicle by millimeter-wave radar (MMWR), an interactive multi-model Kalman filter (IMM-KF) tracking algorithm including data association and track management is proposed. In general, it is difficult to model the target vehicle accurately due to lack of vehicle kinematics parameters, like wheel base, uncertainty of driving behavior and limitation of sensor’s field of view. To handle the uncertainty problem, an interacting multiple model (IMM) approach using Kalman filters is employed to estimate multitarget’s states. Then the compensation of radar ego motion is achieved, since the original measurement is under the radar polar coordinate system.
Technical Paper

Joint Calibration of Dual LiDARs and Camera Using a Circular Chessboard

2020-04-14
2020-01-0098
Environmental perception is a crucial subsystem in autonomous vehicles. In order to build safe and efficient traffic transportation, several researches have been proposed to build accurate, robust and real-time perception systems. Camera and LiDAR are widely equipped on autonomous self-driving cars and developed with many algorithms in recent years. The fusion system of camera and LiDAR provides state-of the-art methods for environmental perception due to the defects of single vehicular sensor. Extrinsic parameter calibration is able to align the coordinate systems of sensors and has been drawing enormous attention. However, differ from spatial alignment of two sensors’ data, joint calibration of multi-sensors (more than two sensors) should balance the degree of alignment between each two sensors.
Technical Paper

Optimal Torque Allocation for Distributed Drive Electric Skid-Steered Vehicles Based on Energy Efficiency

2018-04-03
2018-01-0579
Steering of skid-steered vehicles without steering mechanism is realized by differential drive/brake torque generated from in-wheel motors at left and right sides. Compared to traditional Ackerman-steered vehicles, skid-steered vehicles consume much more energy while steering due to greater steering resistance. Torque allocation is critical to the distributed drive skid-steered vehicles, since it influences not only steering performance, but also energy efficiency. In this paper, the dynamic characteristics of six-wheeled skid-steered vehicles were analyzed, and a 2-DOF vehicle model was established, which is important for both motion tracking control and torque allocation. Furthermore, a hierarchical controller was proposed. Considering tire force characteristics and tire slip, the upper layer calculates the generalized force and desired yaw moment based on anti-windup PI (proportion-integral) control method.
Technical Paper

Path Following Control for Skid Steering Vehicles with Vehicle Speed Adaption

2014-04-01
2014-01-0277
In this paper we present a path following control design for a six-wheel skid-steering vehicle. Contrary to the common approaches that impose non-holonomic constraints, a dynamic vehicle model is established based on a pseudo-static tire model, which uses tire slip to determine tire forces. Our control system admits a modular structure, where a motion controller computes the reference vehicle yaw rate and reference vehicle speed and a dynamics controller tracks these signals. A robust nonlinear control law is designed to track the reference wheel speeds determined by the dynamics controller with proved stability properties. Saturated control techniques are employed in designing the reference yaw rate, which ensures the magnitude of the reference yaw rate does not violate the constraint from the ground-tire adhesion. The simulation results demonstrate the effectiveness of the proposed path following control design.
Technical Paper

Perception-Aware Path Planning for Autonomous Vehicles in Uncertain Environment

2022-12-22
2022-01-7077
Recent researches in autonomous driving mainly consider the uncertainty in perception and prediction modules for safety enhancement. However, obstacles which block the field-of-view (FOV) of sensors could generate blind areas and leaves environmental uncertainty a remaining challenge for autonomous vehicles. Current solutions mainly rely on passive obstacles avoidance in path planning instead of active perception to deal with unexplored high-risky areas. In view of the problem, this paper introduces the concept of information entropy, which quantifies uncertain information in the blind area, into the motion planning module of autonomous vehicles. Based on model predictive control (MPC) scheme, the proposed algorithm can plan collision-free trajectories while actively explore unknown areas to minimize environmental uncertainty. Simulation results under various challenging scenarios demonstrate the improvement in safety and comfort with the proposed perception-aware planning scheme.
X