Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

3-Dimensional Numerical Simulation and Research on Internal Flow about Different EGR Rates in Venturi Tube of EGR System for a Turbocharged Diesel Engine

2024-04-09
2024-01-2418
Exhaust gas recirculation technology is one of the main methods to reduce engine emissions. The pressure of the intake pipe of turbocharged direct-injection diesel engine is high, and it is difficult to realize EGR technology. The application of Venturi tube can easily solve this problem. In this paper, the working principle of guide-injection Venturi tube is introduced, the EGR system and structure of a turbocharged diesel engine using the guide-injection Venturi tube are studied. According to the working principle of EGR system of turbocharged diesel engine, the model of guide-injection Venturi tube is established, the calculation grid is divided, and it is carried out by using Computational Fluid Dynamics method that the three-dimensional numerical simulation of the internal flow of Venturi tube under different EGR rates injection.
Technical Paper

3-Dimensional Numerical Simulation on CuO Nanofluids as Heat Transfer Medium for Diesel Engine Cooling System

2020-04-14
2020-01-1109
CuO-water nanofluids was utilized as heat transfer medium in the cooling system of the diesel engine. By using CFD-Fluent software, for 0.5%, 1%, 3% and 5% mass concentration of nanofluids, 3-dimensional numerical simulation about flow and heat transfer process in the cooling system of engine was actualized. According to stochastic particle tracking in turbulent flow, for solid-liquid two phase flow discrete phase, the moving track of nanoparticles was traced. By this way, for CuO nanoparticles of different mass concentration nanofliuds in the cooling jacket of diesel engine, the results of the concentration distribution, velocity distribution, internal energy variation, resident time, total heat transfer and variation of total pressure reduction between inlet and outlet were ascertained.
Technical Paper

3-Dimentional Numerical Transient Simulation and Research on Flow Distribution Unevenness in Intake Manifold for a Turbocharged Diesel Engine

2024-04-09
2024-01-2420
The design of engine intake system affects the intake uniformity of each cylinder of the engine, which in turn has an important impact on the engine performance, the uniform distribution of EGR exhaust gas and the combustion process of each cylinder. In this paper, the constant-pressure supercharged diesel engine intake pipe is used as the research model to study the intake air flow unevenness of the intake pipe of the supercharged diesel engine. The pressure boundary condition at the outlet of each intake manifold is set as the dynamic pressure change condition. The three-dimensional numerical simulation of the transient flow process in the intake manifold of diesel engine is simulated and analyzed by using numerical method, and the change of the Intake air flow field in the intake manifold under different working conditions during the intake overlapping period is discussed.
Technical Paper

A Lumped Parameter Model Concerning the Amplitude-Dependent Characteristics for the Hydraulic Engine Mount with a Suspended Decoupler

2019-04-02
2019-01-0936
This paper presents a novel lumped parameter model(LPM) and its parameter identification method for the hydraulic engine mount(HEM) with a suspended decoupler. In the new model the decoupler membrane’s variable stiffness caused by being contact with the metallic cage is considered. Therefore, the decoupler membrane in the model can be taken as a spring. As a result, two parameters of the decoupler’s variable stiffness and the equivalent piston area are added. Then the finite element method is employed to analyze the suspended decoupler membrane’s variable stiffness characteristics under the contact state with the metallic cage. A piecewise polynomial is used to fit the decoupler membrane’s variable stiffness. To guarantee the symmetry of the stiffness, the polynomial only keeps the odd power coefficients.
Technical Paper

A Method of Acceleration Order Extraction for Active Engine Mount

2017-03-28
2017-01-1059
The active engine mount (AEM) is developed in automotive industry to improve overall NVH performance. The AEM is designed to reduce major-order signals of engine vibration over a broad frequency range, therefore it is of vital importance to extract major-order signals from vibration before the actuator of the AEM works. This work focuses on a method of real-time extraction of the major-order acceleration signals at the passive side of the AEM. Firstly, the transient engine speed is tracked and calculated, from which the FFT method with a constant sampling rate is used to identify the time-related frequencies as the fundamental frequencies. Then the major-order signals in frequency domain are computed according to the certain multiple relation of the fundamental frequencies. After that, the major-order signals can be reconstructed in time domain, which are proved accurate through offline simulation, compared with the given signals.
Technical Paper

A Novel Battery Impedance Model Considering Internal Temperature Gradient

2018-04-03
2018-01-0436
Battery models are often applied to describe the dynamic characteristics of batteries and can be used to predict the state of the battery. Due to the process of charging and discharging, the battery heat generation will cause the inhomogeneity between inner battery temperature and surface temperature. In this paper, a novel battery impedance model, which takes the impact of the battery internal temperature gradient on battery impedance into account, is proposed to improve the battery model performance. Several experiments are designed and conducted for pouch typed battery to investigate the electrochemical impedance spectroscopy (EIS) characteristics with the artificial temperature gradient (using a heating plate). Experimental results indicate that the battery internal temperature gradient will influence battery EIS regularly.
Technical Paper

A Novel LiDAR Anchor Constraint Method for Localization in Challenging Scenarios

2023-12-20
2023-01-7053
Positioning system is a key module of autonomous driving. As for LiDAR SLAM system, it faces great challenges in scenarios where there are repetitive and sparse features. Without loop closure or measurements from other sensors, odometry match errors or accumulated errors cannot be corrected. This paper proposes a construction method of LiDAR anchor constraints to improve the robustness of the SLAM system in the above challenging environment. We propose a robust anchor extraction method that adaptively extracts suitable cylindrical anchors in the environment, such as tree trunks, light poles, etc. Skewed tree trunks are detected by feature differences between laser lines. Boundary points on cylinders are removed to avoid misleading. After the appropriate anchors are detected, a factor graph-based anchor constraint construction method is designed. Where direct scans are made to anchor, direct constraints are constructed.
Technical Paper

A Road Load Data Processing Method for Transmission Durability Optimization Development

2020-04-14
2020-01-1062
With increasing pressure from environment problem for reduction in CO2 emissions and stricter fuel targets from road vehicles, new transmission technologies are gaining more attention in different main market. To get suitable road load data for transmission durability development is becoming increasingly important and can shorten the development time of new transmission. This paper presents the procedure and methods of road load data development for durability design of transmission product and optimization based on the real road data measurement, statistical characteristics evaluation and fatigue damage equivalency. Apply this road load data method procedure on 3 type of vehicle which represent conventional vehicle, BEV and HEV.
Technical Paper

A Study of Crevice HC Mechanism Based on the Transient HC Test Data and the Double Zone Combustion Model

2008-06-23
2008-01-1652
The effectiveness of after-treatment systems depends on the exhaust gas temperature, which is low during cold-start. As a result, Euro III, Euro IV and FTP75 require that the emissions tests include exhaust from the beginning of cold start. It is proved that 50%∼80% of HC and CO emissions are emitted during the cold start and the amount of unburned fuel from the crevices during starting is much higher than that under warmed engine conditions. The piston crevices is the most part of combustion chamber crevices, and results of mathematical simulations show that the piston crevice contribution to HC emissions is expected to increase during cold engine operation. Based on the transient HC test data and the double zone combustion model, this paper presents the study of the crevice HC Mechanism of the first firing cycle at cold start on an LPG SI Engine. A fast-response flame ionization detector (FFID) was employed to measure transient HC emissions of the first firing cycle.
Technical Paper

Active Plasma Probing for Lean Burn Flame Detection

2023-04-11
2023-01-0293
Combustion diagnostics of highly diluted mixtures are essential for the estimation of the combustion quality, and control of combustion timing in advanced combustion systems. In this paper, a novel fast response flame detection technique based on active plasma is introduced and investigated. Different from the conventional ion current sensing used in internal combustion engines, a separate electrode gap is used in the detecting probing. Further, the detecting voltage across the electrode gap is modulated actively using a multi-coil system to be slightly below the breakdown threshold before flame arrival. Once the flame front arrives at the probe, the ions on the flame front tend to decrease the breakdown voltage threshold and trigger a breakdown event. Simultaneous electrical and optical measurements are employed to investigate the flame detecting efficacy via active plasma probing under both quiescent and flow conditions.
Journal Article

Aerodynamic Performance Modeling of the Centrifugal Compressor and Stability Analysis of the Compression System for Fuel Cell Vehicles

2021-04-06
2021-01-0733
The centrifugal compressor is one of the most commonly used air compressors for fuel cell air supply systems, and it has the small volume, high pressure ratio and low noise. However, surge in a centrifugal compressor severely limits its stable flow range. In this paper, a mathematical model of the compressor aerodynamic performance based on the energy transfer method was established, some parameters of model were identified by experimental data, and the model was validated through experiments. Then the dynamic model of the compression system was derived based on the compressor model and the Moore-Greitzer model. The stability analysis of the compression system was conducted, and it was strictly proved that when the compression system is unstable, there is the limit cycle in this nonlinear system, namely the surge cycle. Furthermore, the simulation of the compression system was conducted and the instability condition of the compression system was presented.
Technical Paper

An FxLMS Controller for Active Control Engine Mount with Experimental Secondary Path Identification

2020-04-14
2020-01-0424
Active engine mounts (AEMs) notably contribute to ensuring superior performance of vehicle’s noise, vibration, and harshness. This paper incorporates a filtered-x-least-mean-squares (FxLMS) controller into the active control engine mount system to attenuate the transmitted force to the body. To avoid the error caused by substituting the load cell for acceleration transducer, the FIR model of the secondary path was obtained by experiment. Finally, a hardware-in-the-loop testing system is built to verify the performance of the active engine mount. It can be observed from the test results that the vibration is reduced notably after control, which demonstrates the effectiveness of the active engine mount and the controller in vibration attenuation.
Technical Paper

An Improved PID Controller Based on Particle Swarm Optimization for Active Control Engine Mount

2017-03-28
2017-01-1056
Manufacturers have been encouraged to accommodate advanced downsizing technologies such as the Variable Displacement Engine (VDE) to satisfy commercial demands of comfort and stringent fuel economy. Particularly, Active control engine mounts (ACMs) notably contribute to ensuring superior effectiveness in vibration attenuation. This paper incorporates a PID controller into the active control engine mount system to attenuate the transmitted force to the body. Furthermore, integrated time absolute error (ITAE) of the transmitted force is introduced to serve as the control goal for searching better PID parameters. Then the particle swarm optimization (PSO) algorithm is adopted for the first time to optimize the PID parameters in the ACM system. Simulation results are presented for searching optimal PID parameters. In the end, experimental validation is conducted to verify the optimized PID controller.
Technical Paper

An Optimized Design of Multi-Chamber Perforated Resonators to Attenuate Turbocharged Intake System Noise

2021-04-06
2021-01-0669
The turbocharger air intake noise during transient conditions like wide open throttle and tip-in/out affects the passenger ride comfort. This paper aims to study an optimized design of multi-chamber perforated resonators to attenuate this noise. The noise produced by a turbocharger in a test vehicle has been measured to find out the noise spectral characteristics which can be used to design the acoustic targets including the amplitude and frequency range of transmission loss (TL). The structural parameters of the resonators are optimized based on genetic algorithm (GA) and two-dimensional prediction theory of the resonator TL. The optimized resonators are installed on the test vehicle to verify the actual noise reduction effect. The results suggest that the broadband noise has been eliminated, and subjective feelings are greatly improved.
Technical Paper

Analysis of Rotor Dynamics Characteristics of Jeffcot Rotor-Floating Ring Bearing System Including Heat Transfer

2021-04-06
2021-01-0641
With the increasing application of turbochargers on internal combustion engines, there are more and more examples of vibration faults in turbochargers. The dynamics characteristics of the bearing-rotor system of engine turbocharger systems have received extensive attention. The bearing-rotor system dynamics is a discipline that couples bearing fluid lubrication research and rotor dynamics. The lubrication characteristics of the bearing and the dynamic characteristics of the rotor must be studied at the same time. In this paper, the lubrication model of floating ring bearing of turbocharger is established, and the viscosity lubrication condition considering heat transfer effect is obtained. Based on the Capone cylindrical bearing oil film force model, the nonlinear oil film force equation of the floating ring bearing is deduced. Further the dynamic model of the Jeffcott rotor-floating ring bearing system is established.
Technical Paper

Analysis on Irreversible Demagnetization Condition of Linear Oscillatory Actuator with Moving Magnets

2022-03-29
2022-01-0281
In this paper, a linear oscillatory actuator (LOA) with moving magnets used in active engine mount is modeled and theoretically analyzed considering its performance decline at high temperature. Firstly, a finite element model (FEM) of the LOA with moving magnets is established. The actuator force is decomposed to ampere force and cogging force through formation mechanism analysis. By using the FEM, ampere forces and cogging forces of the LOA with moving magnets under different current loads and different mover positions are calculated. The FEM and calculation method are validated by bench level test. The voice coil constant and cogging coefficient at normal temperature are identified, which indicates the actuator force is a linear model related to the current and the mover position.
Technical Paper

Anode Pressure Control with Fuzzy Compensator in PEMFC System

2021-04-06
2021-01-0121
Hydrogen safety is of great importance in proton exchange membrane fuel cell (PEMFC) systems. Anode pressure control has become a focus point in recent years. The differential pressure between anode and cathode in PEMFC system needs to be carefully controlled under a suitable threshold. In practice, the anode pressure is usually controlled about 20–30kPa higher than the cathode pressure to minimize nitrogen crossover and improve cell stability. High differential pressure could lead to irreversible damage in proton exchange membrane. PID control was the dominant method to control the anode pressure in the past. However, the anode pressure’s fluctuation when hydrogen mass flow suddenly changes is a long-term challenge. As the requirements of control precision are increasingly high, the traditional PID control needs to be improved. Several new control algorithms are presented in recent researches, however, mostly are theoretical and experimental.
Journal Article

Anti-Lock Braking System Control Design on An Integrated-Electro-Hydraulic Braking System

2017-03-28
2017-01-1578
Two control strategies, safety preferred control and master cylinder oscillation control, were designed for anti-lock braking on a novel integrated-electro-hydraulic braking system (I-EHB) which has only four solenoid valves in its innovative hydraulic control unit (HCU) instead of eight in a traditional one. The main idea of safety preferred control is to reduce the hydraulic pressure provided by the motor in the master cylinder whenever a wheel tends to be locking even if some of the other wheels may need more braking torque. In contrast, regarding master cylinder oscillation control, a sinusoidal signal is given to the motor making the hydraulic pressure in the master cylinder oscillate in certain frequency and amplitude. Hardware-in-the-loop simulations were conducted to verify the effectiveness of the two control strategies mentioned above and to evaluate them.
Technical Paper

Application of the Vortex Identification Algorithms in the Study of the Shear Layer in A 3/4 Open Jet Automotive Wind Tunnel

2018-04-03
2018-01-0746
By means of particle image velocimetry(PIV) measurements, this paper uses vortex identification algorithms to find and analyze the coherent structures in the shear layer region of a 1:15 scaled 3/4 open jet automotive wind tunnel with a high Reynolds number(about 106), referring to SAWTC’s AAWT. The proper orthogonal decomposition(POD) is used to process the PIV experimental data to reconstruct the velocity fields. Based on the vortex identification functions, the locations of the center, the rotation direction and the radius of vortex can be computed. Furthermore, this paper uses the statistical method to study the regularities of distribution of these vortexes in a two-dimensional plane, and identify the vortex pairing process in the shear layer region. This paper also chooses different vortex identification algorithms to find the most accurate and suitable algorithms.
Technical Paper

Assessing and Characterizing the Effect of Altitude on Fuel Economy, Particle Number and Gaseous Emissions Performance of Gasoline Vehicles under Real Driving

2023-04-11
2023-01-0381
High altitudes have a significant effect on the real driving emissions (RDE) of vehicles due to lower pressure and insufficient oxygen concentration. In addition, type approval tests for light-duty vehicles are usually conducted at altitudes below 1000 m. In order to investigate the influence of high altitude on vehicles fuel economy and emissions, RDE tests procedure had been introduced in the China VI emission regulations. In this study, the effect of altitude on fuel economy and real road emissions of three light-duty gasoline vehicles was investigated. The results indicated that for vehicles fuel economy, fuel consumption (L/100 km) for the tested vehicles decreased while the mean exhaust temperature increased with an increase in altitudes. Compared to near sea level, the fuel consumption (L/100 km) of the tested vehicle was reduced by up to 23.28%.
X