Refine Your Search

Topic

Author

Search Results

Technical Paper

A Multiplexing Communication IC for Automotive Body-Electronic Control

1994-03-01
940364
In the field of automotive body electronic control such as control of door locks, power windows, and wipers, there is a growing need of multiplexing communication to reduce the amount of wire harnesses. To meet this need, we developed a multiplexing communication protocol particularly suited to the body electronic control. Based on the developed protocol, we designed a communication control IC and a simple driver/receiver circuit with a few discrete components. The bus access method of the communication is the CSMA/CD with nondestructive bit arbitration, and its bit rate is 5 kbps. Its transmission media is a single wire. The communication IC has a multiplexing control block and a serial I/O block for an interface with a host CPU. It was fabricated using CMOS technology and has a chip of 2.6mm x 3.0mm in size that contains about 5,000 transistors. The driver/receiver circuit consists of one transistor, one capacitor and several resistors.
Technical Paper

A New Battery System for the Estima Hybrid Minivan

2002-03-04
2002-01-1090
Development of a new battery system for Toyota Estima Hybrid, the world's first minivan hybrid vehicle, has been completed. The battery pack that consists of 30 nickel metal hydride battery modules is compactly arranged under the 3rd seat in the cabin along with components such as the battery cooling blower and the ducts. This arrangement was designed in consideration of user's vehicle use, passengers' comfort and efficient battery-cooling performance.
Technical Paper

A New Proportional Collection System for Extremely Low Emission Measurement in Vehicle Exhaust

1999-05-03
1999-01-1460
A new proportional collection system for extremely low tailpipe emission measurement in transient conditions has been developed. The new system can continuously sample a minute flow of exhaust gas, at a rate that is proportional to the engine exhaust rate. A zero grade gas dilution technique is utilized to prevent the influence of pollutants in atmospheric air that are the same concentration level as those in the exhaust gas. The system has accuracy within ±5%. For the direct exhaust gas flow meter, a pitot tube type flow meter is utilized as it is simple, heat resistant, sufficiently accurate and has low flow-resistance characteristic. For the collection and dilution controllers, two mass flow controllers (MFC) were adopted. The MFCs' output can be adversely influenced by variation of the specific heat of the sample gas, resulting in flow reporting error.
Technical Paper

A Study of Additive Effects on ATF Frictional Properties Using New Test Methods

1990-10-01
902150
A new test machine has been developed which can evaluate vibration due to stick-slip using an actual full-scale clutch pack. Using this machine, a static breakaway friction coefficient measurement test method and a stick-slip test method have been established. Both methods have been shown to provide results which correlate with the results from both a full-scale assembly test and a vehicle shudder evaluation test. The evaluation of the frictional properties of commercial oils using these test methods showed that the static breakaway friction coefficient and the stick-slip properties have generally contradictory performance to each other for automatic transmission. The study of the frictional properties for typical additives and an analysis of the surface of the steel plates with ESCA (Electron Spectroscopy for Chemical Analysis) showed that the frictional properties are significantly affected by the additives adsorbed on the clutch plate sliding surface.
Technical Paper

A Technology of Weight Reduction for the Aluminum Cast Wheel

1993-11-01
931885
In the field of automobile disk wheels, demands for aluminum wheels have been increasing for the reason of ride comfort and better appearance. And over 90 percent of luxurious passenger cars are equipped with aluminum wheels. This trend is spurred also by the demand for higher fuel efficiency for the cause of environmental protection, which calls for weight reduction of automobiles. This paper reports our research on manufacturing light-weight, high-quality aluminum cast wheels; covering the entire process from basic design to casting, and placing emphasis on the following three points. 1) Determination of optimum wheel configuration through computer simulation 2) Selection of optimum material composition 3) Optimization of the thin plate casting conditions Combination of the above technologies developed for the purpose of weight reduction resulted in the weight reduction of approximately 20% over the conventional aluminum wheels.
Technical Paper

Analysis of Milling Mechanism by Ball End-Mill and Development of High Speed Die-Sinking Method

1988-11-01
881742
Various dies have been used for producing many internal and external parts of an automobile. This paper describes the method of ‘High Speed Die-sinking’ that is one of the key technologies for die-making. We analyzed the milling mechanism of a typical Ball End-Mill used for die-sinking and performed cutting tests. As a result, we have achieved high speed and fine quality die-sinking technology. Its feed speed is about four or five times as fast as before, and the irregularity of the milled surface is under one-fifth as compared with previous level. In addition, we will propose the new method for estimating finishing performance by ball end-mill.
Technical Paper

Analysis of Sintered Silicon Nitride Grinding Damage

1993-03-01
930163
Sintered silicon nitride, particularly in structural ceramics, has superior properties such as low weight, heat resistance, wear resistance, etc. It is already being applied to automobile engine parts such as the swirl chamber and the turbine rotor. In recent years, the strength of silicon nitride has shown to be above 1000MPa. This has been achieved through advances in manufacturing technology such as materials powder, forming, sintering and so on. But the silicon nitride is easily damaged during grinding because it has less fracture toughness than metal. Consequently, the inherent strength of the material is not demonstrated in the actual products presently produced. It is assumed that the main cause of strength reduction is microcrack. In ordinary grinding methods, the length of microcrack has been estimated at approximately twenty micrometers by fracture mechanics analysis.
Technical Paper

Analysis of the Fuel Liquid Film Thickness of a Port Fuel Injection Engine

2006-04-03
2006-01-1051
In this paper, the authors have developed a new measuring method of the liquid fuel film thickness on walls, such as intake ports, the combustion chamber and cylinder liner of a Port Fuel Injection (PFI) engine, and clarified the fuel film behavior under various running conditions when Fiber-based Laser-Induced Fluorescence (Fiber-based LIF) was applied to the newly developed method. The thickness of the fuel film is measured by detecting the intensity of fluorescence from the film that is irradiated by a He-Cd laser. A single optical fiber is used to simultaneously transmit the laser beam and the fluorescence from the film. In addition, the S/N ratio of the fluorescence is improved by using a He-Cd laser of which the wavelength (λ=442nm) is able to efficiently irradiate test fuel doped 2-3-butandione. Using this method, the fuel film thickness on the wall of the PFI engine was analyzed in two case studies.
Technical Paper

Automatic Transmission Control System Developed for Toyota Mild Hybrid System (THS-M)

2002-03-04
2002-01-1253
Environmental improvement is moving forward, due in part to the reduction of fuel consumption of automatic transmission(AT) vehicles as a result of social requirements in recent years and many measures have been implemented. Adoption of idling stop is a typical example introduced to reduce energy consumption while the vehicle is stopped to improve the urban environment. However, there are problems such as responsiveness and smoothness for an AT vehicle when the engine is stopped with the shift selector in “D” range. To overcome these problems, a new start clutch control system has been developed using an electric oil pump installed in a simple hybrid vehicle called a mild hybrid. As a result, a smooth feeling starting performance is achieved by operating the system in combination with the engine and other systems.
Technical Paper

Binding Force Control of Uni-Pressure Cushion in Automobile Panel Stamping

1995-02-01
950916
Recently, single action draw with cushion replaces draw with double action presses. In the single action draw, binding fluctuation problem occurs by its structure. We applied an NC cushion to prevent the problem. We compared the cushion force wave with and without an NC cushion. The NC cushion showed effective damping. We studied the binding force control of a side member outer panel. The panel didn't have the formable range of binding. This means the lowest binding force to avoid wrinkling, still had crack problems. We introduce four patterns of binding force control with the NC cushion. As a result, we found the suitable pattern to suppress the surface distortion. Controlling the binding force shows effectiveness as a means of suppressing surface distortions.
Technical Paper

Deactivation Mechanism of NOX Storage-Reduction Catalyst and Improvement of Its Performance

2000-03-06
2000-01-1196
A lean burn engine is effective in reducing fuel consumption. NOX storage-reduction catalysts (NSR catalyst) have been developed for these engines. In order to improve the performance of NSR catalysts, suppression of sulfur poisoning, which is one of the main causes of NSR catalyst deactivation, must be improved. In this paper, the sulfur desorption phenomenon has been analyzed from a novel point of view. Based on these results, an NSR catalyst with improved sulfur resistance has been developed by incorporation of highly dispersed titania, and use of a heat resistant zirconia with enhanced basicity.
Technical Paper

Development and Practicing of Automatic Fluorescent Magnetic Particles Inspection

1993-03-01
930576
The fluorescent magnetic particle inspection is widely used as a visual inspection method for checking cracks generated in hardening and grinding of induction-hardened parts. However, automation of this inspection process has strongly been demanded, due to poor environmental conditions and production line speed. To satisfy such a demand, we have developed a method for picking up images of automotive parts with higher S/N ratio and an original algorithm for image processing which helps measure cracks accurately without being affected by the illuminance and magnetic particle solution concentration. Then we selected the front axle shaft as the object to study practical use and have solved various technical problems in actual use, thereby succeeding in actual application to our production lines.
Technical Paper

Development of Assembly Line Verification

1994-03-01
940890
To more effectively improve the work on a vehicle assembly line, it is desirable to have a method by which the degree of work load on each person can be evaluated quantitatively; enables us to decide the priority order of improvement; and calculates the improvement effect. We developed a quantitative evaluation method of work load by introducing a concept of physiological stress generated regardless of the type of muscles involved. Applying the burden borne by the body to the load evaluation of various assembly operations involved the problem of complex load measuring methods. We solved this problem by categorizing the load conditions for various assembly operations and converting each to a standard state of loads evaluated by experiments.
Technical Paper

Development of Ductile Cast Iron Flywheel Integrated with Hot Form-Rolled Gear

1998-02-01
980568
New ductile cast iron flywheel integrated with gear and its manufacturing process were developed to reduce the manufacturing steps and cost compared with conventional flywheel around which a steel ring gear is fit. In this process, the ring gear teeth around a cast iron flywheel are formed directly in net shape and free from any defect by the hot form-rolling method, followed by the thermomechanical treatment in a short time. The gear is superior to that made by the conventional hobbing and heat treatment in accuracy, strength and anti-wear property.
Journal Article

Development of Fuel Cell (FC) System for New Generation FC Bus

2019-04-02
2019-01-0372
Toyota Motor Corporation has been actively pursuing the development of fuel cell vehicles (FCVs) to respond to global environmental concerns and demands for clean energy. Toyota developed the first fuel cell (FC) bus to receive vehicle type certification in Japan. Subsequently, a new FC bus has been developed, which adopts two FC systems and four high-voltage batteries to achieve the required high power performance and durability. For enhanced durability, the FC system is controlled to maximize usage of the high-voltage batteries and to reduce the number of electric potential changes of the fuel cell. To accomplish this, the voltage of the FC stack must be kept high and FC power must be kept low. The high-voltage batteries were used to actively minimize FC power during acceleration.
Technical Paper

Development of Fuel Cell Hybrid Vehicle in TOYOTA

2011-05-17
2011-39-7238
The outline of the TOYOTA FCHV-adv is described in this paper. The TOYOTA FCHVadv achieved an approximately 25 percent improvement in vehicle fuel efficiency and about 1.9 times the amount of usable hydrogen in comparison with the previous model. These improvements have enabled almost 2.5 times longer practical cruising range, more than 500 km. The freeze start capabilities of the FCHV-adv were improved by modifying the FC stack and control system. As a result, the FCHV-adv has been capable of starting at a temperature of -30°C. In the future, TOYOTA intends to improve durability and reduce costs.
Technical Paper

Development of Fuel-Cell Hybrid Vehicle

2002-03-04
2002-01-0096
Toyota Motor Corporation developed the Fuel Cell Hybrid Vehicle (FCHV). The FCHV-4 is an evolution of the conventional fuel cell vehicle that has made immense improvements in efficiency. Both a fuel cell and a secondary battery are used as sources of energy for the hybrid system. By using these energy sources proportionally, the system can be kept at or near its optimum state. The FCHV-4's system is designed to improve the efficiency and aims for high responsiveness when the vehicle is in a transitional state. In the same way as most electric vehicles, and as in the gasoline powered hybrid “Prius”, the energy the traction motor creates during breaking can be used to regenerate the secondary. The fuel cell and traction motor inverter are connected directly, with the secondary battery connected through the DC/DC converter to the fuel cell in parallel.
Technical Paper

Development of High Accuracy NOx Sensor

2019-04-02
2019-01-0749
This paper presents an improvement in the accuracy of NOx sensors at high NOx concentration regions by optimizing the manufacturing process, sensor electrode materials and structure, in order to suppress the deterioration mechanism of sensor electrodes. Though NOx sensors generally consist of Pt/Au alloy based oxygen pump electrodes and Pt/Rh alloy based sensor electrodes, detailed experimental analysis of aged NOx sensors showed changes in the surface composition and morphology of the sensor electrode. The surface of the sensor electrode was covered with Au, which is not originally contained in the electrode, resulting in a diminished active site for NOx detection on the sensor electrode and a decrease in sensor output. Theoretical analysis using CAE with molecular dynamics supported that Au tends to be concentrated on the surface of the sensor electrode.
Technical Paper

Development of High Fatigue Strength Spring - Application on Clutch Disc Torsional Damper

1995-02-01
950903
We have developed a new torsional damper spring which lowers the torsional rigidity of the clutch disc while retaining its conventional size. The following two items have been adopted in the newly developed spring: 1) A new steel wire which suppresses any core-softening of the element wire through nitriding. 2) A dual-stage shot peening method which uses harder steel shots (rather than conventional shots) in order to obtain an optimal residual stress profile. As a result of evaluating the fatigue characteristics of this spring, it was discovered that its fatigue strength is approximately 35% higher than that of the conventional spring. A clutch disc using this spring was able to absorb rattling noises which conventional clutch discs could not.
Technical Paper

Development of High Strength and High Toughness Bainitic Steel for Automotive Lower Arm

1995-02-01
950211
A high strength and high toughness new bainitic steel has been developed which shows comparable mechanical properties, fatigue property, and machinability to those of quenched and tempered SAE 5140. The heat treatment of the bainitic steel is aging after hot forging in order to improve ratio of 0.2% proof stress and tensile strength (i.e. yield ratio) and to avoid warpage associated with quenching. The new bainitic steel has been applied to the slender and lightweight lower arms for automotive suspension. As a result, the total production costs in the lower arms have been reduced by nearly 15 percent.
X