Refine Your Search

Topic

Author

Search Results

Technical Paper

A New Proportional Collection System for Extremely Low Emission Measurement in Vehicle Exhaust

1999-05-03
1999-01-1460
A new proportional collection system for extremely low tailpipe emission measurement in transient conditions has been developed. The new system can continuously sample a minute flow of exhaust gas, at a rate that is proportional to the engine exhaust rate. A zero grade gas dilution technique is utilized to prevent the influence of pollutants in atmospheric air that are the same concentration level as those in the exhaust gas. The system has accuracy within ±5%. For the direct exhaust gas flow meter, a pitot tube type flow meter is utilized as it is simple, heat resistant, sufficiently accurate and has low flow-resistance characteristic. For the collection and dilution controllers, two mass flow controllers (MFC) were adopted. The MFCs' output can be adversely influenced by variation of the specific heat of the sample gas, resulting in flow reporting error.
Technical Paper

A Simulation Test Method for Deterioration of FKM Compounds Engine Crankshaft Oil Seals

1992-10-01
922373
A laboratory scale simulation test method was developed to evaluate deterioration of radial lip seals of fluoroelastomer (FKM) compounds for engine crankshafts. The investigation of the collected radial lip seals of FKM compounds from the field with service up to 450,000km indicated that the only symptom of deterioration is a decrease of lip interference. This deterioration was not duplicated under conventional test conditions using an oil seal test machine because sludge build up at the seal lip caused oil leakage. However, revised test conditions make it possible to duplicate the deterioration experienced in the field. An immersion test using a radial lip seal assembled with the mating shaft was newly developed. This test method was found to be useful to evaluate deterioration of radial lip seals using FKM compounds. Oil additives affect the deterioration of lip seal materials significantly. Therefore, immersion tests of four different oils were conducted to evaluate this effect.
Journal Article

Analysis of Oxidative Deterioration of Biodiesel Fuel

2008-10-06
2008-01-2502
Methyl esters of saturated/unsaturated higher aliphatic acids (FAMEs) and a FAME of waste cooking oil (WCOME) were heated at 120°C in an air gas flow. The samples were analyzed before and after heating, using six different methods including electrospray ionization mass spectrometry. As a result, the samples after heating were found to contain low molecular weight aliphatic compounds and oligomers of the FAME. Based on the chemical structure of these oxidation products, reaction schemes were proposed for the deterioration of FAMEs. In addition, two unsaturated FAMEs containing 2,6-di-t-butyl-p-cresol (BHT) were similarly heated and analyzed to examine the effect of BHT on the oxidation of these FAME.
Technical Paper

Analysis of Sintered Silicon Nitride Grinding Damage

1993-03-01
930163
Sintered silicon nitride, particularly in structural ceramics, has superior properties such as low weight, heat resistance, wear resistance, etc. It is already being applied to automobile engine parts such as the swirl chamber and the turbine rotor. In recent years, the strength of silicon nitride has shown to be above 1000MPa. This has been achieved through advances in manufacturing technology such as materials powder, forming, sintering and so on. But the silicon nitride is easily damaged during grinding because it has less fracture toughness than metal. Consequently, the inherent strength of the material is not demonstrated in the actual products presently produced. It is assumed that the main cause of strength reduction is microcrack. In ordinary grinding methods, the length of microcrack has been estimated at approximately twenty micrometers by fracture mechanics analysis.
Technical Paper

Analysis of the Deterioration of Nylon-66 Immersed in GTL Diesel Fuel Part 1. Analysis and Test of Nylon and GTL Diesel Fuel Before and After Immersion

2006-10-16
2006-01-3326
The effect of GTL diesel fuel on organic materials used in fuel delivery systems of vehicles was investigated. Specimens made from 16 kinds of organic materials were immersed in GTL diesel fuels synthesized at Refinery-A and Refinery-B (referred to as GTL-A and GTL-B, respectively) and then subjected to tensile testing. The tensile test results revealed that elongation of the nylon sample immersed in GTL-A was extremely small, about 4% of that of untreated nylon. In the light of this finding, the GTL diesel fuels and nylons before and after immersion test were analyzed in detail using about 20 analysis methods to determine the cause for poor elongation. The following points were found. (1) GTL-A consisted of low molecular-weight paraffins. (2) GTL-A had low molecular-weight i-paraffins. (3) The nylon immersed in GTL-A contained low molecular-weight paraffins. (4) The paraffins in the nylon immersed in GTL-A were richer in i-paraffins than the original GTL-A.
Technical Paper

Analysis of the Deterioration of Nylon-66 Immersed in GTL Diesel Fuel Part 2. Analysis of Model Fuel and Nylon Before and After Immersion

2006-10-16
2006-01-3327
In a previous paper (Part 1 of this series), nylon-66 specimens were immersed in two GTL diesel fuels (GTL-A and GTL-B) and then subjected to tensile testing. The tensile test results revealed that the elongation of the specimen immersed in GTL-A was dramatically reduced. The GTL diesel fuels and nylon specimens before and after immersion were analyzed to determine the cause of the decline in elongation. It was found that the poor elongation was caused by penetration and oxidation of low molecular-weight paraffins and that the ease of penetration and oxidation of paraffin depended on the structure of paraffin. In this paper, the low molecular-weight paraffins detected in GTL-A were mixed to produce model fuels. Then, pieces of nylon cut from the tensile test specimen, were immersed in the model fuels. In addition, partial oxidation products of the paraffin (alcohol, aldehyde or ketone and acid) were used in immersion tests of the nylon pieces.
Technical Paper

Anti- Combustion Deposit Fuel Development for 2009 Toyota Formula One Racing Engine

2011-08-30
2011-01-1983
Toyota participated in Formula One1 (F1) Racing from 2002 to 2009. As a result of the downturn in the world economy, various engine developments within F1 were restricted in order to reduce the cost of competing in F1. The limit on the maximum number of engines allowed has decreased year by year. Toyota focused on the engine performance deterioration due to the combustion chamber deposits. In 2009, Toyota was successful in reducing around 40% of the deterioration by making combustion chamber cleaner in cooperation with ExxonMobil. This contributed to good result of 2009 F1 season for Toyota, including two second place finishes.
Technical Paper

Deactivation Mechanism of NOX Storage-Reduction Catalyst and Improvement of Its Performance

2000-03-06
2000-01-1196
A lean burn engine is effective in reducing fuel consumption. NOX storage-reduction catalysts (NSR catalyst) have been developed for these engines. In order to improve the performance of NSR catalysts, suppression of sulfur poisoning, which is one of the main causes of NSR catalyst deactivation, must be improved. In this paper, the sulfur desorption phenomenon has been analyzed from a novel point of view. Based on these results, an NSR catalyst with improved sulfur resistance has been developed by incorporation of highly dispersed titania, and use of a heat resistant zirconia with enhanced basicity.
Technical Paper

Development of Bearing with Composite Overlay for High-Performance Engines

1996-02-01
960988
Recently, there has been a tendency of high power and high speed in automotive engines. In addition they have been also required high reliability. And engine bearings have been required to be advanced in wear resistance as well as seizure resistance. Therefore, copper-lead alloy bearings with overlay, which have better seizure resistance, have been widely used for high speed engines up to the present. But it becomes very important for them to advance the overlay wear resistance. In this paper, the composite overlay is mainly researched to improve wear resistance regarding kind of hard particles and their amounts in the overlay.
Technical Paper

Development of Exhaust Manifold Muffler

1993-03-01
930625
The muffler layout in the exhaust system has been optimized for the attenuation of exhaust noise which has not been studied much to this date. As a result, “Exhaust Manifold Muffler” has been developed. This unit is capable of efficiently muffling the primary and secondary componemts of the engine explosion stroke noise. Such task is achieved without deterioration of engine performance by allocating the volume at the junction of the exhaust manifold branch pipes. Acoustic characteristics of “Exhaust Manifold Muffler” have been analyzed by FEM and experimental methods, which have shown that not only does the volume placed at the junction of the exhaust manifold branch pipes work as a conventional muffler, but also prevents the exhaust manifold branch pipes from amplifying exhaust noise. This is the reason why “Exhaust Manifold Muffler” can muffle more efficiently than the conventional muffler.
Technical Paper

Development of High Performance Three-Way-Catalyst

2006-04-03
2006-01-1061
In conventional gasoline engine vehicles, three-way catalysts are used to simultaneously remove HC, CO and NOx from the exhaust gas. The effectiveness of the catalyst to remove these harmful species depends strongly on the oxygen concentration in the exhaust gas. Deterioration of three-way catalyst results in a reduction in its purification activity and OSC (oxygen storage capacity). In this investigation, additive elements were used to enhance the durability and OSC of the catalyst support material. An optimized formulation of a CeO2-ZrO2 and a ZrO2 material was developed to have excellent durability, improved OSC, enhanced interaction between precious metals and support materials, and increase thermal stability. Using these newly developed support materials, catalysts with increased performance was designed.
Technical Paper

Development of New Automatic Transmission Fluid for Fuel Economy

2003-10-27
2003-01-3258
It is important to reduce the viscosity of automatic transmission fluid (ATF) in order to improve fuel economy. However, in general, low viscosity fluid can cause metal fatigue, wear, and seizure. It is necessary to increase the viscosity of the fluid at higher temperatures to maintain the durability of the automatic transmission (AT). The key point is the selection of the base oil and the viscosity index improver (VII) with both a high viscosity index (VI) and excellent shear stability. On the basis of this concept, a new generation high performance ATF named WS was developed. WS can achieve the highest level of fuel economy, while maintaining the durability of the AT.
Technical Paper

Development of New Manual Transmission Gear Oil for Fuel Economy

2005-05-11
2005-01-2182
We developed a new Manual Transmission Gear Oil (MTF) named LV for improved fuel economy and CO2 reduction. MTF LV is a low viscosity fluid to reduce stir losses at lower temperatures. In general, low viscosity fluids can cause metal fatigue, wear and seizure. The MTF LV was designed to overcome these problems by maintaining the oil film thickness after it is deteriorated and improving the wear characteristics with additives. As a result, the MTF LV provides equal or better durability than the current MTF. In addition, it also has good performance at low temperatures, better shift feeling characteristics, and improved oxidation stability.
Technical Paper

Development of P/M Titanium Engine Valves

2000-03-06
2000-01-0905
In October 1998, a new mass-produced car with titanium engine-valves was released from TOYOTA Motor Corporation. Both intake and exhaust valves were manufactured via a newly developed cost-effective P/M forging process. Furthermore, the material which was specially designed for the exhaust one is a unique titanium metal matrix composite (MMC). This paper discusses the materials and manufacturing methods used. The tensile, fatigue strength and creep resistance of the MMC are always superior to those for the typical heat-resistant steel of 21-4N. Both valves have achieved sufficient durability and reliability with a manufacturing cost acceptable for mass-produced automobile parts.
Technical Paper

Development of Sintered Integral Camshaft

1983-02-01
830254
The camshaft for an automobile engine is generally made of chilled cast iron. Due to increasing demand for higher performance, lawer maintenance and better fuel economy, it is difficult to make the cast iron camshaft lighter and/or more durable. In order to overcome these problems, development of an integral camshaft comprised of a sintered alloy cam piece for better wear resistance and steel tube for weight saving has been accomplished. In 1981 Toyota Motor Corporation successively started the mass-production of the sintered intergral camshaft for the new 1.8 liter ls engine. The significant advantages are as follows; (1) Weight saving (2) Excellent wear resistance (3) Improvement of lubrication system (4) Saving machining cost
Technical Paper

Development of Three-way Catalyst Using Composite Alumina-Ceria-Zirconia

2003-03-03
2003-01-0811
To realize the high performance of the three-way catalyst, this development focused on the heat resistance of the CeO2-ZrO2 solid solution (CZ) that possesses the oxygen storage capacity (OSC). A new concept of the OSC compound with high durability is proposed. We devised a new method of inhibiting the coagulation of the primary CZ particles by placing diffusion barrier layers made of alumina among the primary CZ particles. This material is called “ACZ”. The specific surface area of ACZ was larger than that of the conventional CZ after durability test. The sintering of Pt on the ACZ-added catalyst is inhibited and the crystal size of CZ in the ACZ-added catalyst is smaller than that in the CZ-added catalyst. The OSC and the light off temperature of the ACZ-added catalyst are improved.
Technical Paper

Development of an On-Board Type Oil Deterioration Sensor

1993-10-01
932840
According to the principle of pH measurement, an on-board type engine oil deterioration sensor has been developed. The developed sensor is composed of a Pb and oxidized stainless steel electrodes. The sensor signal shows a good linear relationship to the quasi-pH value of the oil. Especially in the region where the oil deterioration proceeds, the remaining basic additives in the oil is easily estimated from the sensor signal.
Technical Paper

Development of open laboratory automation system

2000-06-12
2000-05-0170
We urgently need to develop the next generation of automotive technology to support energy conservation and the global environment. For this we need an advancement of the Laboratory Automation System (LAS). However, restructuring the hardware and software of the LAS requires enormous amounts of time and costs. To solve the problems of the LAS development, we formed a user-vendor working group, which then established the common rules of LAS and IMACS (Integrated Measurement And Control System). IMACS are software-centered rules, characterized by the stratification of LAS and the interface called software parts. So far, we have integrated IMACS into five engineering fields. A total of 11 testing machine vendors participated in the development. We manufactured about 350 software parts and made their specifications openly available. As the next step, we are collecting software parts by deleting redundant functions.
Technical Paper

Development of the Camshaft with Surface Remelted Chilled Layer

1986-10-01
861429
A camshaft for an automobile engine is generally made of chilled cast iron. But, because of increased demand for higher performance engines, a camshaft with many camshaft has been expected. The cam intervals were necessarily narrow. So it was difficult to manufacture the conventional chilled cast iron camshaft at a moderate price. In the case of a rocker-arm type valve mechanism, higher wear resistance was necessary. After due consideration to solve these problems, development of surface remelted chilled layer camshafts by Toyota's unique manufacturing method has been accomplished. In 1984 Toyota Motor Corporation started the mass-production of this camshaft, first for the new 1.0 liter 1E engine, and then for the 1.3 liter 2E engine. In this paper, the excellent wear resistance, the low manufacturing cost and the characteristic manufacturing method are described.
Technical Paper

Engine Testing Comparison of the Relative Oxidation Stability Performance of Two Engine Oils

1995-10-01
952530
The relative oxidation stability of two fully formulated engine oils was compared in three testing methods by following the increase in kinematic viscosity of the oil. The purpose of the study was to determine the cause of the completely opposite ranking of the oxidation stability of the two oils that was observed in the ASTM Sequence IIIE engine test and the JASO M333 93 engine test and to determine the degree of correlation the two engine tests had with the field. The study consisted of laboratory oxidation testing, engine testing and taxi field testing to cover the range of conditions from controlled oxidation to actual driving conditions.
X