Refine Your Search

Topic

Author

Search Results

Journal Article

A Direct Yaw Control Algorithm for On- and Off-Road Yaw Stability

2011-04-12
2011-01-0183
Models for off-road vehicles, such as farm equipment and military vehicles, require an off-road tire model in order to properly understand their dynamic behavior on off-road driving surfaces. Extensive literature can be found for on-road tire modeling, but not much can be found for off-road tire modeling. This paper presents an off-road tire model that was developed for use in vehicle handling studies. An on-road, dry asphalt tire model was first developed by performing rolling road force and moment testing. Off-road testing was then performed on dirt and gravel driving surfaces to develop scaling factors that explain how the lateral force behavior of the tire will scale from an on-road to an off-road situation. The tire models were used in vehicle simulation software to simulate vehicle behavior on various driving surfaces. The simulated vehicle response was compared to actual maximum speed before sliding vs. turning radius data for the studied vehicle to assess the tire model.
Technical Paper

A Measuring Technology to Analyze HC Concentration in the Air Intake System while the Engine is in Operation

2004-03-08
2004-01-0142
In order to correspond to the exhaust emissions regulations that become severe every year, more advanced engine control becomes necessary. Engine engineers are concerned about the Hydrocarbons (HCs) that flow through the air-intake ports and that are difficult to precisely control. The main sources of the HCs are, the canister purge, PCV, back-flow gas through the intake valves, and Air / Fuel ratio (A/F) may be aggravated when they flow into the combustion chambers. The influences HCs give on the A/F may also grow even greater, which is due to the increasingly stringent EVAP emission regulations, by more effective ventilation in the crankcase, and also by the growth of the VVT-operated angle and timing, respectively. In order to control the A/F more correctly, it is important to estimate the amount of HCs that are difficult to manage, and seek for suitable controls over fuel injection and so on.
Journal Article

A New Semi-Empirical Method for Estimating Tire Combined Slip Forces and Moments during Handling Maneuvers

2015-07-01
2015-01-9112
Modeling the tire forces and moments (F&M) generation, during combined slip maneuvers, which involves cornering and braking/driving at the same time, is essential for the predictive vehicle performance analysis. In this study, a new semi-empirical method is introduced to estimate the tire combined slip F&M characteristics based on flat belt testing machine measurement data. This model is intended to be used in the virtual tire design optimization process. Therefore, it should include high accuracy, ease of parameterization, and fast computational time. Regression is used to convert measured F&M into pure slip multi-dimensional interpolant functions modified by weighting functions. Accurate combined slip F&M predictions are created by modifying pure slip F&M with empirically determined shape functions. Transient effects are reproduced using standard relaxation length equations. The model calculates F&M at the center of the contact patch.
Technical Paper

An Evaluation of Multiplexing System for Automotive Distributed Control

1991-02-01
910718
On board multiplexing communication system is regarded as a necessary technology for the future of electronic system in automobiles. Many companies are developing multiplexing systems and the ISO and SAE are active in establishing standards for communication protocols. The proposed communication protocol specifications have different specifications. Consequently, no compatible evaluation standards existed, and it was difficult to compare one protocol to another. Therefore, to assist the standardization activities of the IS0 and SAE, we have developed an evaluation method for distributed multiplexed communication systems and evaluated each of the proposed protocols using this method. These evaluations were performed from the point of view of the future users of these systems. In this paper we present the results of the experiments on distributed multiplexed communication systems each of which consists of communication IC and the proposed physical layer.
Technical Paper

Analysis of Vehicle Stability After Releasing the Accelerator in a Turn

2005-04-11
2005-01-0411
Vehicle stability after releasing the accelerator during limit cornering (from now on “Tuck-in”) is the behavior that the turning radius of a vehicle gets smaller after releasing the accelerator. This paper presents that the main factors of yaw moment variation by releasing the accelerator are the change of lateral forces due to longitudinal transfer of normal loads, lateral shift of vehicle center of gravity due to vehicle roll and tire lateral deflection, and the change of lateral forces due to deceleration. It also shows that roll stiffness distribution and longitudinal acceleration have an influence through the formulation of turning radius ratio.
Journal Article

Anthropomimetic Traction Control: Quarter Car Model

2011-09-13
2011-01-2178
Human expert drivers have the unique ability to combine correlated sensory inputs with repetitive learning to build complex perceptive models of the vehicle dynamics as well as certain key aspects of the tire-ground interface. This ability offers significant advantages for navigating a vehicle through the spatial and temporal uncertainties in a given environment. Conventional traction control algorithms utilize measurements of wheel slip to help insure that the wheels do not enter into an excessive slip condition such as burnout. This approach sacrifices peak performance to ensure that the slip limits are generic enough suck that burnout is avoided on a variety of surfaces: dry pavement, wet pavement, snow, gravel, etc. In this paper, a novel approach to traction control is developed using an anthropomimetic control synthesis strategy.
Technical Paper

Anti- Combustion Deposit Fuel Development for 2009 Toyota Formula One Racing Engine

2011-08-30
2011-01-1983
Toyota participated in Formula One1 (F1) Racing from 2002 to 2009. As a result of the downturn in the world economy, various engine developments within F1 were restricted in order to reduce the cost of competing in F1. The limit on the maximum number of engines allowed has decreased year by year. Toyota focused on the engine performance deterioration due to the combustion chamber deposits. In 2009, Toyota was successful in reducing around 40% of the deterioration by making combustion chamber cleaner in cooperation with ExxonMobil. This contributed to good result of 2009 F1 season for Toyota, including two second place finishes.
Technical Paper

Application of Dynamic Mode Decomposition to Influence the Driving Stability of Road Vehicles

2019-04-02
2019-01-0653
The recent growth of available computational resources has enabled the automotive industry to utilize unsteady Computational Fluid Dynamics (CFD) for their product development on a regular basis. Over the past years, it has been confirmed that unsteady CFD can accurately simulate the transient flow field around complex geometries. Concerning the aerodynamic properties of road vehicles, the detailed analysis of the transient flow field can help to improve the driving stability. Until now, however, there haven’t been many investigations that successfully identified a specific transient phenomenon from a simulated flow field corresponding to driving stability. This is because the unsteady flow field around a vehicle consists of various time and length scales and is therefore too complex to be analyzed with the same strategies as for steady state results.
Technical Paper

Assessment of High-Temperature Encapsulants for Planar Packages

2010-11-02
2010-01-1729
Seven encapsulants with operating temperatures up to 250°C were surveyed for use in planar packages for wide-bandgap dice. Two of the encapsulants failed processability test because they were not able to flow, and another two failed because they induced voids or cracks after curing. The dielectric results of the remaining three encapsulants showed that both dielectric strength and permittivity decreased almost 40% when the temperature was increased up to 250°C. As the three encapsulants were used to encapsulate a power module, it was proven that all of them could protect the package from early breakdown caused by the poor dielectric strength of air.
Journal Article

Decoupled 3D Moment Control for Vehicle Motion Using In-Wheel Motors

2013-04-08
2013-01-0679
Vehicles equipped with in-wheel motors are being studied and developed as a type of electric vehicle. Since these motors are attached to the suspension, a large vertical suspension reaction force is generated during driving. Based on this mechanism, this paper describes the development of a method for independently controlling roll and pitch as well as yaw using driving force distribution control at each wheel. It also details the theoretical calculation of a method for decoupling the dynamic motions. Finally, it describes the application of these 3D dynamic motion control methods to a test vehicle and the confirmation of the performance improvement.
Technical Paper

Design of an All-Revolute, Linkage-Type, Constant-Velocity Coupling

1995-09-01
952133
This paper describes a design methodology for a three degree-of-freedom, linkage-based constant-velocity coupling. This coupling resembles the Clemens coupling patented in 1872 and has evolved from the authors' previous research in parallel mechanisms. This coupling contains only revolute joints and is therefore likely to be more durable and less prone to manufacturing errors than conventional higher-pair couplings. The kinematic configuration, based on the symmetric double octahedral Variable Geometry Truss mechanism (figure 2), has many inherent traits that make it ideal for application to industrial uses. Its parallel design of simple links and revolute joints provide it with high strength, rigidity, and light-weight characteristics. It has a link-joint construction that allows its geometry to be varied for specific applications, such as producing high angular deflection between the input and output shafts.
Technical Paper

Developing a Methodology to Synthesize Terrain Profiles and Evaluate their Statistical Properties

2011-04-12
2011-01-0182
The accuracy of computer-based ground vehicle durability and ride quality simulations depends on accurate representation of road surface topology as vehicle excitation data since most of the excitation exerted on a vehicle as it traverses terrain is provided by the terrain topology. It is currently not efficient to obtain accurate terrain profile data of sufficient length to simulate the vehicle being driven over long distances. Hence, durability and ride quality evaluations of a vehicle depend mostly on data collected from physical tests. Such tests are both time consuming and expensive, and can only be performed near the end of a vehicle's design cycle. This paper covers the development of a methodology to synthesize terrain profile data based on the statistical analysis of physically measured terrain profile data.
Technical Paper

Development of 2-Liter 6-Cylinder Gasoline Engines, Toyota 1G Engine Series

1987-10-01
871976
1G engine series consists of four types of 2-liter, in-line, 6-cylinder gasoline engines for passenger cars, with different performance characteristics to meet diversified market demands. These engines are already put into mass production. The original engine - 1G-EU - is a compact and light weight 2-valve OHC engine with the maximum power 77 kW/5200 rpm. The 1G-GEU is a 4-valve DOHC engine developed on the basis of the 1G-EU engine, with a higher performance and a higher power of 103 kW/6200 rpm. The 1G-GZEU is a mechanical supercharging type engine based on the 1G-GEU, with a remarkably improved performance in the low and medium engine speed ranges, and the highest power of 110 kW/6000 rpm. The 1G-GTEI! is a turbocharging type engine also based on the 1G-GEU, with a markedly improved performance in the medium and high speed ranges, and the high power of 136 kW/6200 rpm. A number of new technologies were introduced on development of these engines.
Technical Paper

Development of Auditory Warning Signals for Mitigating Heavy Truck Rear-End Crashes

2010-10-05
2010-01-2019
Rear-end crashes involving heavy trucks occur with sufficient frequency that they are a cause of concern within regulatory agencies. In 2006, there were approximately 23,500 rear-end crashes involving heavy trucks which resulted in 135 fatalities. As part of the Federal Motor Carrier Safety Administration's (FMCSA) goal of reducing the overall number of truck crashes, the Enhanced Rear Signaling (ERS) for Heavy Trucks project was developed to investigate methods to reduce or mitigate those crashes where a heavy truck has been struck from behind by another vehicle. Researchers also utilized what had been learned in the rear-end crash avoidance work with light vehicles that was conducted by the National Highway Traffic Safety Administration (NHTSA) with Virginia Tech Transportation Institute (VTTI) serving as the prime research organization. ERS crash countermeasures investigated included passive conspicuity markings, visual signals, and auditory signals.
Technical Paper

Development of Bearing with Composite Overlay for High-Performance Engines

1996-02-01
960988
Recently, there has been a tendency of high power and high speed in automotive engines. In addition they have been also required high reliability. And engine bearings have been required to be advanced in wear resistance as well as seizure resistance. Therefore, copper-lead alloy bearings with overlay, which have better seizure resistance, have been widely used for high speed engines up to the present. But it becomes very important for them to advance the overlay wear resistance. In this paper, the composite overlay is mainly researched to improve wear resistance regarding kind of hard particles and their amounts in the overlay.
Technical Paper

Development of Hybrid System for SUV

2005-04-11
2005-01-0273
Toyota Hybrid System (THS), that combines a gasoline engine and an electric motor was installed in the Prius, which was introduced in 1997 as the world's first mass-produced hybrid passenger car, and was vastly improved in 2003. The new Prius gained a status of highly innovative and practical vehicle. In 2005, combined with a V6 engine, THS had a further evolution as a Hybrid System for SUV, which was installed in the RX400h and Highlander Hybrid to be introduced into the world. This report will explain “new THS” which achieved both V8 engine power performance and compact class fuel economy, while securing the most stringent emission standard, SULEV.
Technical Paper

Development of In-cylinder Mixture and Flame Propagation Distribution Measurement Device with Spark Plug Type Sensor

2011-08-30
2011-01-2045
A new method to measure in-cylinder flame propagation and mixture distribution has been developed. The distribution is derived from analyzing the temporal history of flame spectra of CH* and C2*, which are detected by a spark plug type sensor with multi-optical fibers. The validity of this method was confirmed by verifying that the measurement results corresponded with the results of high speed flame visualization and laser induced fluorescence (LIF) measurement. This method was also applied to analysis of cyclic combustion fluctuation on start-up in a direct injection spark ignition (DISI) engine, and its applicability was confirmed.
Technical Paper

Development of New Concept Iridium Plug

2001-01-05
2001-01-1201
In the field of automotive gasoline engines, new products aiming at greater fuel economy and cleaner exhaust gases are under development with the aim of preventing environmental destruction. Severe ignition environments such as lean combustion, stronger charge motion, and large quantities of EGR require ever greater combustion stability. In an effort to meet these requirements, an iridium plug has been developed that achieves high ignitability and long service life through reduction of its diameter, using a highly wear-resistant iridium alloy as the center electrode.(1)(2) Recently, direct injection engines have attracted attention. In stratified combustion, a feature of the direct injection engine, the introduction of rich air-fuel mixtures in the vicinity of the plug ignition region tends to cause carbon fouling. This necessitates plug carbon fouling resistance.
Technical Paper

Development of Sleeve Clinching Method and Making Practicable

1997-02-24
970372
We developed a fastening method to reduce noise levels and fastening work loads. The development was based on research into improved tools and fasteners. This was done in preparation for an increase in elderly worker and female worker population in the Automobile Assembly Shop. The principle of this method is to form female threads inside a straight sleeve by clinching the sleeve around a threaded bolt. We achieved improvements in component material clinching force and a durability for loosening torque compared to conventional bolt and nut methods.
Technical Paper

Development of Technology for Reclaiming Automotive Shredder Residue

1996-02-01
960406
Automotive Shredder Residue (ASR), the waste generated by shredding operations in the recycling of metals from scrapped automobiles, is currently disposed of in landfill sites. In Japan, disposal regulations such as leachable lead control have been changed, and moreover landfill sites are getting scarce. Therefore how to control, treat and decrease ASR is a serious matter. This study presents methods for the recycling of automotive shredder residue into automobile components by dry mechanical processing steps. These steps sort the material into several categories accrding to its properties. The material fineness is improved by further, thorough, sorting steps.
X