Refine Your Search

Topic

Author

Search Results

Technical Paper

A Comparative Study on Fatigue Damage of Caldie™ from Different Manufacturing Routes

2022-03-29
2022-01-0245
In automotive body manufacturing the dies for blanking/trimming/piercing are under most severe loading condition involving high contact stress at high impact loading and large number of cycles. With continuous increase in sheet metal strength, the trim die service life becomes a great concern for industries. In this study, competing trim die manufacturing routes were compared, including die raw materials produced by hot-working (wrought) vs. casting, edge-welding (as repaired condition) vs. bulk base metals (representing new tools), and the heat treatment method by induction hardening vs. furnace through-heating. CaldieTM, a Uddeholm trademarked grade was used as trim die material. The mechanical tests are performed using a WSU developed trimming simulator, with fatigue loading applied at cubic die specimen’s cutting edges through a tungsten carbide rod to accelerate the trim edge damage. The tests are periodically interrupted at specified cycles for measurement of die edge damage.
Technical Paper

A New Experimental Technique for Friction Simulation in Automotive Piston Ring and Cylinder Liners

1998-05-04
981407
A new friction testing system has been designed and built to simulate the actual engine conditions in friction and wear test of piston-ring and cylinder liner assembly. Experimental data has been developed as Friction Coefficient / Crank Angle Degree diagrams including the effects of running speed (500 and 700 rpm) and ring normal load. Surface roughness profilocorder traces were obtained for tested samples. Mixed lubrication regime observed in the most part of the test range. New cylinder bore materials and lubricants can be screened easily and more reliable simulated engine friction data can be collected using this technique.
Technical Paper

A New Method to Accelerate Road Test Simulation on Multi-Axial Test Rig

2017-03-28
2017-01-0200
Road test simulation on test rig is widely used in the automobile industry to shorten the development circles. However, there is still room for further improving the time cost of current road simulation test. This paper described a new method considering both the damage error and the runtime of the test on a multi-axial test rig. First, the fatigue editing technique is applied to cut the small load in road data to reduce the runtime initially. The edited road load data could be reproduced on a multi-axial test rig successfully. Second, the rainflow matrices of strains on different proving ground roads are established and transformed into damage matrices based on the S-N curve and Miner rules using a reduction method. A standard simulation test for vehicle reliability procedure is established according to the proving ground schedule as a target to be accelerated.
Journal Article

Buckling Analysis of Uncertain Structures Using Imprecise Probability

2015-04-14
2015-01-0485
In order to ensure the safety of a structure, adequate strength for structural elements must be provided. Moreover, catastrophic deformations such as buckling must be prevented. Using the linear finite element method, deterministic buckling analysis is completed in two main steps. First, a static analysis is performed using an arbitrary ordinate applied loading pattern. Using the obtained element axial forces, the geometric stiffness of the structure is assembled. Second, an eigenvalue problem is performed between structure's elastic and geometric stiffness matrices, yielding the structure's critical buckling loads. However, these deterministic approaches do not consider uncertainty the structure's material and geometric properties. In this work, a new method for finite element based buckling analysis of a structure with uncertainty is developed. An imprecise probability formulation is used to quantify the uncertainty present in the mechanical characteristics of the structure.
Technical Paper

Characterization of Mechanical Behavior of Thermoplastics with Local Deformation Measurement

2012-04-16
2012-01-0040
In quasi-static tension and compression tests of thermoplastics, full-field strain distribution on the gage section of the specimen can be captured using the two-dimensional digital image correlation method. By loading the test specimens made of a talc-filled and impact-modified polypropylene up to tensile failure and large compressive strains, this study has revealed that inhomogeneous deformation within the gage section occurs quite early for both test types. This leads to the challenge of characterizing the mechanical properties - some mechanical properties such as stress-strain relationship and fracture strain could depend on the measured section length and location. To study this problem, the true stress versus true strain curves determined locally in different regions within the gage length are compared.
Technical Paper

Chassis Lightweight Hole Placement with Weldline Evaluation

2021-01-07
2020-01-5217
Vehicle weight-driven design comes amid rising higher fuel efficiency standards and must meet the criteria—pass proving ground (PG) test events that are equivalent to customer usage. Computer-aided engineering (CAE) fatigue analysis for PG is a successful push behind to digitally simulate vehicle durability performance with high fidelity. The need for vehicle weight reduction often arises in the vehicle development final phases when CAE methods, time, and tangible cost-effective opportunities are limited or nonexistent. In this research, a new CAE methodology is developed to identify opportunities for lightweight hole placement in the chassis structure and deliver a cost-effective lightweight solution with no additional impact on fatigue life. The successful application of this new methodology exhibits the effectiveness of the truck frame, which is the key chassis structure to support the body, suspension, and powertrain.
Technical Paper

Clean and Cost-effective Dry Boundary Lubricants for Aluminum Forming

1998-02-23
980453
Preliminary research in our laboratory has demonstrated that boric acid is an effective lubricant with an unusual capacity to reduce the sliding friction (providing friction coefficients as low as 0.02) and wear of metallic and ceramic materials. More recent studies have revealed that water or methanol solutions of boric acid can be used to prepare strongly bonded layers of boric acid on aluminum surfaces. It appears that boric acid molecules have a strong tendency to bond chemically to the naturally oxidized surfaces of aluminum and its alloys and to make these surfaces very slippery. Recent metal-formability tests indicated that the boric acid films applied to aluminum surfaces worked quite well, improving draw scale performance by 58 to 75%.
Technical Paper

Crack Failure Mode Analysis for Cam-Housing Rocker Arm and Pin

2017-03-28
2017-01-0358
During the extensive testing under NATO and Commercial Standards, crack is observed in camshaft housing to initiate from the eccentric shaft bore and go toward the hold down bolt hole. Hence lab test proposal is originated to induce similar failure in a controlled method and then to compare new design alternatives. CAE analysis follows the same set up as the lab test to duplicate failure mode in stress analysis and fatigue analysis with duty cycle loads, and then figures out two strategies on how to improve the design, including geometry change and material change. In geometry wise, four new design iterations are evaluated for comparison. In material wise, one new material for camshaft housing and five manufacturing effect parameters for pin and rocker arm are compared, including ground, machined, machined and decarburization, casting, as well as casting and nitride. With those comparisons, all manufacturing parameters are compared based on effectiveness to affect the fatigue life.
Technical Paper

Development Of A Practical Multi-disciplinary Design Optimization (MDO) Algorithm For Vehicle Body Design

2016-04-05
2016-01-1537
The present work is concerned with the objective of developing a process for practical multi-disciplinary design optimization (MDO). The main goal adopted here is to minimize the weight of a vehicle body structure meeting NVH (Noise, Vibration and Harshness), durability, and crash safety targets. Initially, for simplicity a square tube is taken for the study. The design variables considered in the study are width, thickness and yield strength of the tube. Using the Response Surface Method (RSM) and the Design Of Experiments (DOE) technique, second order polynomial response surfaces are generated for prediction of the structural performance parameters such as lowest modal frequency, fatigue life, and peak deceleration value. The optimum solution is then obtained by using traditional gradient-based search algorithm functionality “fmincon” in commercial Matlab package.
Technical Paper

Door Slam CAE Method Investigation

2015-04-14
2015-01-1324
Nowadays, as an irreplaceable means alongside CAD and testing, CAE is more and more widely applied with advanced material modeling and simulation methods continuously being explored, so as to get more accurate result as testing. In vehicle product development process, door slam durability evaluation is an important measurement for body closure structure. So far numerous effort has been taken to develop more mature methods to well define door slam simulation in stress and fatigue life analysis. Overall all methods ever being applied can be summarized as two categories, linear stress based method and nonlinear stress based method. The methodologies, such as inertia relief method, direct transient response solution, or local strain approach, can be included in linear stress based method with linear material properties as symbol in CAE model. In local strain approach, contact surface could be defined in the necessary area with consideration for more realistic load transfer.
Technical Paper

Droplet Measurement of High-Pressure Liquid Ammonia Injection Using PDPA

2023-10-31
2023-01-1637
Liquid ammonia is an ideal zero carbon fuel to reduce carbon emission of internal combustion engines. The high-pressure injection of liquid ammonia is a key technology to fast distribute fuels and prepare better combustion performances. The physical properties of liquid ammonia are different to traditional fossil fuels including diesel and gasoline, which can change the spray and droplet characteristics significantly. However, the spray droplet characteristics of liquid ammonia injection is lack of investigations. In this paper, Phase Doppler Particle Analyzer (PDPA) are used to measure the droplet diameter and velocity of high-pressure liquid ammonia sprays up to 75 MPa and compare to diesel sprays. Effects of flash boiling of liquid ammonia droplet characteristics are also analyzed.
Journal Article

Durability Study of a High Pressure Common Rail Fuel Injection System Using Lubricity Additive Dosed Gasoline-Like Fuel - Additional Cycle Runtime and Teardown Analysis

2019-04-02
2019-01-0263
This study is a continuation of previous work assessing the robustness of a Cummins XPI common rail injection system operating with gasoline-like fuel. All the hardware from the original study was retained except for the high pressure pump head and check valves which were replaced due to cavitation damage. An additional 400 hour NATO cycle was run on the refurbished fuel system to achieve a total exposure time of 800 hours and detect any other significant failure modes. As in the initial investigation, fuel system parameters including pressures, temperatures and flow rates were logged on a test bench to monitor performance over time. Fuel and lubricant samples were taken every 50 hours to assess fuel consistency, metallic wear, and interaction between fuel and oil. High fidelity driving torque and flow measurements were made to compare overall system performance when operating with both diesel and light distillate fuel.
Technical Paper

Effect of Soot Loading on the Thermal Characteristics of Diesel Engine Oils

2001-05-14
2001-01-1714
When compared with new oil, used diesel engine oils exhibited thermal conductivity that increases as the concentration of soot increases. The magnitude of the effect depends on the oil composition, and on the size and dispersion of the soot particles. Although soot in engine oil is generally deleterious to engine performance from the standpoint of wear and deposits, no negative effects were observed on the thermal performance of the oil itself; indeed, even slight positive effects are expected for oils that maintain soot in stable dispersion. Therefore, the thermal challenge for engine oils in diesel engines that use exhaust gas recirculation will be to prevent soot deposition on engine surfaces.
Technical Paper

Effects of Sinusoidal Whole Body Vibration Frequency on Drivers' Muscle Responses

2015-04-14
2015-01-1396
Low back pain has a higher prevalence among drivers who have long term history of vehicle operations. Vehicle vibration has been considered to contribute to the onset of low back pain. However, the fundamental mechanism that relates vibration to low back pain is still not clear. Little is known about the relationship between vibration exposure, the biomechanical response, and the physiological responses of the seated human. The aim of this study was to determine the vibration frequency that causes the increase of muscle activity that can lead to muscle fatigue and low back pain. This study investigated the effects of various vibration frequencies on the lumbar and thoracic paraspinal muscle responses among 11 seated volunteers exposed to sinusoidal whole body vibration varying from 4Hz to 30Hz at 0.4 g of acceleration. The accelerations of the seat and the pelvis were recorded during various frequency of vibrations. Muscle activity was measured using electromyography (EMG).
Technical Paper

Engine Friction and Wear Performances with Polyalkylene Glycol Engine Oils

2016-10-17
2016-01-2271
The application of polyalkylene glycol (PAG) as a base stock for engine oil formulation has been explored for substantial fuel economy gain over traditional formulations with mineral oils. Various PAG chemistries were explored depending on feed stock material used for manufacturing. All formulations except one have the same additive package. The friction performance of these oils was evaluated in a motored single cylinder engine with current production engine hardware in the temperature range 40°C-120°C and in the speed range of 500 RPM-2500 RPM. PAG formulations showed up to 50% friction reduction over GF-5 SAE 5W-20 oil depending on temperature, speed, and oil chemistry. Friction evaluation in a motored I-4 engine showed up to 11% friction reduction in the temperature range 40°C-100°C over GF-5 oil. The paper will share results on ASTM Sequence VID fuel economy, Sequence IVA wear, and Sequence VG sludge and varnish tests. Chassis roll fuel economy data will also be shared.
Journal Article

Experimental Studies on Viscoelasticity of Film Materials in Laminated Glass Sheets

2015-04-14
2015-01-0709
Polyvinyl butyral (PVB) film and SentryGlas® Plus (SGP) film have been widely used in automotive windshield and architecture curtain serving as protective interlayer materials. Viscoelasticity is the unique property of such film materials, which can contribute to improving impact resistance and energy absorbing characteristics of laminated glass. In this study, the uniaxial tensile creep and stress relaxation tests are conducted to investigate the viscoelasticity of PVB and SGP films used in laminated glass. Firstly, tensile creep and stress relaxation tests of PVB film (0.76mm) and SGP film with three thickness (0.89mm, 1.14mm and 1.52mm) are conducted using Instron universal testing machine to obtain creep and stress relaxation curves. Afterwards, both viscoelastic models (Burgers model, Maxwell-Weichert model) and empirical equations (Findley power law, Kohlrausch equation) are applied to simulate the creep and stress relaxation results.
Technical Paper

FD&E Total Life T-Sample Residual Stress Analytical Predictions and Measured Results

2019-04-02
2019-01-0528
The Society of Automotive Engineers Fatigue Design & Evaluation Committee [SAE FD&E] is actively working on a total life project for weldments, in which the welding residual stress is a key contributor to an accurate assessment of fatigue life. Physics-based welding process simulation and various types of residual stress measurements were pursued to provide a representation of the residual stress field at the failure location in the fatigue samples. A well-controlled and documented robotic welding process was used for all sample fabrications to provide accurate inputs for the welding simulations. One destructive (contour method) residual stress measurement and several non-destructive residual stress measurements-surface X-ray diffraction (XRD), energy dispersive X-ray diffraction (EDXRD), and neutron diffraction (ND)-were performed on the same or similarly welded samples.
Technical Paper

Fatigue Resistance of Short Fiber-Reinforced TiNi/Al6061-SiC Composite

2007-04-16
2007-01-1423
The short NiTi fiber-reinforced NiTi/Al6061-SiC composite was recently developed through the U.S. Army SBIR Phase-II program [1]. The objectives of this project are to use short NiTi fiber reinforcement to induce compressive stress through shape memory effect, to use silicon carbide (SiC) particulate reinforcement to enhance the mechanical properties of the aluminum matrix, to gain fundamental knowledge of short NiTi fiber-reinforced aluminum matrix composite, and eventually to improve fatigue resistance, impact damage tolerance and fracture toughness of the composite. The fatigue life, damage and fracture behavior of TiNi/Al6061-SiC, TiNi/Al6061, Al6061-SiC composites as well as monolithic Al6061 alloy were investigated under fully reversed cyclic loading. It was found that fatigue life of NiTi/Al6061-SiC composite, in term of the cycles, increased by two orders of magnitude, compared to monolithic Al6061 alloy
Technical Paper

In-situ Mechanical Characterization of Compression Response of Anode Coating Materials through Inverse Approach

2022-12-16
2022-01-7121
In this decade, the detailed multi-layer FE model is always applied for investigating the mechanical behavior of Li-ion batteries under mechanical abuse. However, establishing a detailed model of different types of batteries requires a series of material characterization of components. To improve the efficiency of the procedure of component calibration, we introduce a procedure of automatic coating material characterization as an example to represent the strategy. The proposed method is constructing a response solver through MATLAB to predict the mechanical behavior of the coating specimen's representative volume element (RVE) under designated test conditions. The coating material is represented through Drucker-Prager-Cap (DPC) model. All parameters, including boundary conditions and material parameters, are included in this solver.
Technical Paper

Low-Friction Coatings for Air Bearings in Fuel Cell Air Compressors

2000-04-02
2000-01-1536
In an effort to reduce fuel consumption and emissions, hybrid vehicles incorporating fuel cell systems are being developed by automotive manufacturers, their suppliers, federal agencies (specifically, the U.S. Department of Energy) and national laboratories. The fuel cell system will require an air management subsystem that includes a compressor/expander. Certain components in the compressor will require innovative lubrication technology in order to reduce parasitic energy losses and improve their reliability and durability. One such component is the air bearing for air turbocompressors designed and fabricated by Meruit, Inc. Argonne National Laboratory recently developed a carbon-based coating with low friction and wear attributes; this near-frictionless-carbon (NFC) coating is a potential candidate for use in turbocompressor air bearings. We presents here an evaluation of the Argonne coating for air compressor thrust bearings.
X