Refine Your Search

Topic

Search Results

Journal Article

A Hybrid Thermal Bus for Ground Vehicles Featuring Parallel Heat Transfer Pathways

2018-04-03
2018-01-1111
Improved propulsion system cooling remains an important challenge in the transportation industry as heat generating components, embedded in ground vehicles, trend toward higher heat fluxes and power requirements. The further minimization of the thermal management system power consumption necessitates the integration of parallel heat rejection strategies to maintain prescribed temperature limits. When properly designed, the cooling solution will offer lower noise, weight, and total volume while improving system durability, reliability, and power efficiency. This study investigates the integration of high thermal conductivity (HTC) materials, carbon fibers, and heat pipes with conventional liquid cooling to create a hybrid “thermal bus” to move the thermal energy from the heat source(s) to the ambient surroundings. The innovative design can transfer heat between the separated heat source(s) and heat sink(s) without sensitivity to gravity.
Technical Paper

An Analysis of Regulated and Unregulated Emissions in an HSDI Diesel Engine under the LTC Regime

2007-04-16
2007-01-0905
Several mechanisms are discussed to understand the formation of both regulated and unregulated emissions in a high speed, direct injection, single cylinder diesel engine using low sulphur diesel fuel. Experiments were conducted over a wide range of injection pressures, EGR rates, injection timings and swirl ratios. The regulated emissions were measured by the standard emission equipment. Unregulated emissions such as aldehydes and ketones were measured by high pressure liquid chromatography and hydrocarbon speciation by gas chromatography. Particulate mass was measured with a Tapered Element Oscillating Microbalance (TEOM). Analysis was made of the sources of different emission species and their relationship with the combustion process under the different operating conditions. Special attention is given to the low temperature combustion (LTC) regime which is known to reduce both NOx and soot. However the HC, CO and unregulated emissions increased at a higher rate.
Technical Paper

Correlating the Diesel Spray Behavior to Nozzle Design

1999-10-25
1999-01-3555
This paper studies the effect of nozzle geometry on the flow characteristics inside a diesel fuel injection nozzle and correlates to the subsequent atomization process under different operating conditions, using simple turbulent breakup model. Two kinds of nozzles, valve covered orifice (VCO) and mini-SAC nozzle, with various nozzle design parameters were studied. The internal flow inside the nozzle was simulated using 3-D computational fluid dynamics software with k-ε turbulence model. The flow field at the nozzle exit was characterized by two parameters: the fuel discharge coefficient Cd and the initial amplitude parameter amp0. The latter parameter represents the turbulence characteristics of the exit flow. The effects of nozzle geometry on the mean velocity and turbulent energy distribution of the exit flow were also studied. The characteristics of the exit flow were then incorporated into the spray model in KIVA-II to study the effect of nozzle design on diesel spray behavior.
Technical Paper

Development and Testing of an Online Oil Condition Monitor for Diesel Driven Army Ground Vehicles

2012-04-16
2012-01-1348
This paper describes the author's experiences in the design, validation and field-testing of a low cost, online oil condition monitor for diesel driven Army ground vehicles. This online oil condition monitor utilizes a multi-frequency approach to electrochemical impedance spectroscopy to interrogate and evaluate fluid health in near real time. A dual microcontroller processing architecture embedded in the sensor itself executes an oil-health evaluation algorithm and provides estimates of lubricant remaining useful life, as well as identification of the primary mode of degradation of the fluid. These data are transmitted off the sensor via J1939 compliant CAN messages. In this paper the unique application requirements, which formed the foundation of the development process, are discussed, and the technical and design challenges associated with producing a military grade smart-sensor at a sufficiently low price point for widespread adoption in the ground vehicle market are detailed.
Technical Paper

Diminishment of Cuts in Durability Test Time Reduction Methods

2018-04-03
2018-01-0622
In this study, we extend and improve on the methods introduced by Brudnak et al. [1] by adding a second objective to the reduction of test time. This second objective under consideration is to diminish or reduce the number of cuts or deletions to the time histories during an editing process. As discussed in [1], segment-based methods consider each segment for retention or deletion based on its own localized severity, not considering the segments around it. As a result, retained segments can be widely scattered in the time domain depending on signal characteristics and therefore a large number of cuts can be induced unintentionally. Regardless of the joining method, such cuts and joins require artificial signal processing and should therefore be minimized. In this paper we present techniques to minimize these cuts while at the same time maintaining our original goals of time reduction and severity retention.
Technical Paper

Effect of Cetane Number with and without Additive on Cold Startability and White Smoke Emissions in a Diesel Engine

1999-05-03
1999-01-1476
I The effect of Cetane Number (CN) of the fuel and the addition of cetane improvers on the cold starting and white smoke emissions of a diesel engine was investigated. Tests were conducted on a single-cylinder, four-stroke-cycle, air-cooled, direct-injection, stand-alone diesel engine in a cold room at ambient temperatures ranging from 25 °C to - 5 °C. Five fuels were used. The base fuel has a CN of 49.2. The CN of the base fuel was lowered to 38.7 and 30.8 by adding different amounts of aromatic hydrocarbons. Iso-octyl nitrate is added to the high aromatic fuels in order to increase their CN to 48.6 and 38.9 respectively. Comparisons are made between the five fuels to determine the effect of CN and the additive on cylinder peak pressure, heat release rate, cold start-ability, combustion instability, hydrocarbon emissions and solid and liquid particulates.
Journal Article

Enhancing Decision Topology Assessment in Engineering Design

2014-04-01
2014-01-0719
Implications of decision analysis (DA) on engineering design are important and well-documented. However, widespread adoption has not occurred. To that end, the authors recently proposed decision topologies (DT) as a visual method for representing decision situations and proved that they are entirely consistent with normative decision analysis. This paper addresses the practical issue of assessing the DTs of a designer using their responses. As in classical DA, this step is critical to encoding the DA's preferences so that further analysis and mathematical optimization can be performed on the correct set of preferences. We show how multi-attribute DTs can be directly assessed from DM responses. Furthermore, we show that preferences under uncertainty can be trivially incorporated and that topologies can be constructed using single attribute topologies similarly to multi-linear functions in utility analysis. This incremental construction simplifies the process of topology construction.
Technical Paper

Experimental Investigation of Single and Two-Stage Ignition in a Diesel Engine

2008-04-14
2008-01-1071
This paper presents an experimental investigation conducted to determine the parameters that control the behavior of autoignition in a small-bore, single-cylinder, optically-accessible diesel engine. Depending on operating conditions, three types of autoignition are observed: a single ignition, a two-stage process where a low temperature heat release (LTHR) or cool flame precedes the main premixed combustion, and a two-stage process where the LTHR or cool flame is separated from the main heat release by an apparent negative temperature coefficient (NTC) region. Experiments were conducted using commercial grade low-sulfur diesel fuel with a common-rail injection system. An intensified CCD camera was used for ultraviolet imaging and spectroscopy of chemiluminescent autoignition reactions under various operating conditions including fuel injection pressures, engine temperatures and equivalence ratios.
Technical Paper

Fe-Mn-Al-C Alloy Steels – A New Armor Class

2017-03-28
2017-01-1703
Fe-Mn-Al-C steel alloys have been previously studied for their potential as an alternative steel alloy for Rolled Homogeneous Armor (RHA). Prior examination of the material system has shown promise in this capacity due to the high strength and reduced density of Mn steels as compared to RHA. The prior tested materials were both wrought and cast versions but were all less than an inch in thickness. The alloy is once again being examined, but this time in thicker wrought plate. The aim of the current body of work is to develop a Military Specification (MIL-SPEC) for this new class of ballistically capable material. For industry and communities interested in such material development, the purpose of this paper, then, is to provide a summary of the processing parameters, the prior ballistic and dynamic material testing, cutting and welding approaches, and the extent of progress on industrial sized thick plate development.
Journal Article

HMMWV Axle Testing Methodology to Determine Efficiency Improvements with Superfinished Hypoids

2013-04-08
2013-01-0605
A dynamometer test methodology was developed for evaluation of HMMWV axle efficiency with hypoid gearsets, comparing those having various degrees of superfinish versus new production axles as well as used axles removed at depot maintenance. To ensure real-world applicability, a HMMWV variant vehicle model was created and simulated over a peacetime vehicle duty cycle, which was developed to represent a mission scenario. In addition, tractive effort calculations were then used to determine the maximum input torques. The drive cycle developed above was modified into two different profiles having varying degrees of torque variability to determine if the degree of variability would have a significant influence on efficiency in the transient dynamometer tests. Additionally, steady state efficiency performance is measured at four input pinion speeds from 700-2500 rpm, five input torques from 50 - 400 N⋅m, and two sump temperatures, 80°C and 110°C.
Technical Paper

In Search of Efficient Walking Robots

2005-04-11
2005-01-0841
With the recent conflicts in Afghanistan and Iraq, it is increasingly evident that the demands of warfare are changing and the need for innovative mobility systems is growing. In the rough, unstructured terrain that the soldiers encounter, they have reverted to using mules and donkeys to move stealthily and quickly. In light of the growing need for autonomous systems, the Army is looking at the possibility of legged mobility options such as gasoline powered quadrupeds to traverse the off-road terrain. As technology advances, the era of military bipeds may well be in sight. However, current bipedal robotic technology is far too inefficient for battlefield use. Much of this inefficiency stems from actuated control of each limb's motion throughout the entire gait cycle. An alternative approach is to exploit the passive pendular dynamics of legs and legged bodies for energy savings. This paper compares and contrasts fully-actuated walking with passive walking.
Journal Article

Influence of Injection Duration and Ambient Temperature on the Ignition Delay in a 2.34L Optical Diesel Engine

2015-09-01
2015-01-1830
Non-conventional operating conditions and fuels in diesel engines can produce longer ignition delays compared to conventional diesel combustion. If those extended delays are longer than the injection duration, the ignition and combustion progress can be significantly influenced by the transient following the end of injection (EOI), and especially by the modification of the mixture field. The objective of this paper is to assess how those long ignition delays, obtained by injecting at low in-cylinder temperatures (e.g., 760-800K), are affected by EOI. Two multi-hole diesel fuel injectors with either six 0.20mm orifices or seven 0.14mm orifices have been used in a 2.34L single-cylinder optical diesel engine. We consider a range of ambient top dead center (TDC) temperatures at the start of injection from 760-1000K as well as a range of injection durations from 0.5ms to 3.1ms. Ignition delays are computed through the analysis of both cylinder pressure and chemiluminescence imaging.
Journal Article

Investigating Through Simulation the Mobility of Light Tracked Vehicles Operating on Discrete Granular Terrain

2013-04-08
2013-01-1191
This paper presents a computational framework for the physics-based simulation of light vehicles operating on discrete terrain. The focus is on characterizing through simulation the mobility of vehicles that weigh 1000 pounds or less, such as a reconnaissance robot. The terrain is considered to be deformable and is represented as a collection of bodies of spherical shape. The modeling stage relies on a novel formulation of the frictional contact problem that requires at each time step of the numerical simulation the solution of an optimization problem. The proposed computational framework, when run on ubiquitous Graphics Processing Unit (GPU) cards, allows the simulation of systems in which the terrain is represented by more than 0.5 million bodies leading to problems with more than one million degrees of freedom.
Technical Paper

Long Term Hydrogen Vehicle Fleet Operational Assessment

2011-09-13
2011-01-2299
The U. S. Army Tank Automotive Research, Development and Engineering Center (TARDEC) National Automotive Center (NAC) owns a fleet of ten Hydrogen Hybrid Internal Combustion Engine (H2ICE) vehicles that have been demonstrated in various climates from 2008 through 2010. This included demonstrations in Michigan, Georgia, California and Hawaii. The fleet was consolidated into a single location between July 2009 and April 2010. Between July of 2009 and January of 2011, data collection was completed on the fleet of H2ICE vehicles deployed to Oahu, Hawaii for long-term duration testing. The operation of the H2ICE vehicles in Hawaii utilized standard operation of a non-tactical vehicle at a real-world military installation. The vehicles were fitted with data acquisition equipment to record the operation and performance of the H2ICE vehicles; maintenance and repair data was also recorded for the fleet of vehicles.
Journal Article

On the Ignition Behavior of JP-8 in Military Relevant Diesel Engines

2011-04-12
2011-01-0119
U.S. Army ground vehicles predominately use JP-8 as the energy source for ground vehicles based on the ‘one fuel forward policy’. Though this policy was enacted almost twenty years ago, there exists little fundamental JP-8 combustion knowledge at diesel engine type boundary conditions. Nevertheless, current U.S. Army ground vehicles predominately use commercial off-the-shelf or modified commercial diesel engines as the prime mover. Unique military engines are typically utilized when commercial products do not meet the mobility and propulsion system packaging requirements of the particular ground vehicle in question.
Journal Article

On the Premixed Phase Combustion Behavior of JP-8 in a Military Relevant Single Cylinder Diesel Engine

2011-04-12
2011-01-0123
Current U.S. Army ground vehicles predominately use commercial off-the-shelf or modified commercial diesel engines as the prime mover. Unique military engines are typically utilized when commercial products do not meet the mobility requirements of the particular ground vehicle in question. In either case, such engines traditionally have been calibrated using North American diesel fuel (DF-2) and Jet Propellant 8 (JP-8) compatibility wasn't given much consideration since any associated power loss due to the lower volumetric energy density was not an issue for most applications at then targeted climatic conditions. Furthermore, since the genesis of the ‘one fuel forward policy’ of using JP-8 as the single battlefield fuel there has been limited experience to truly assess fuel effects on diesel engine combustion systems until this decade.
Journal Article

Particulate Matter Characterization Studies in an HSDI Diesel Engine under Conventional and LTC Regime

2008-04-14
2008-01-1086
Several mechanisms are discussed to understand the particulate matter (PM) characterization in a high speed, direct injection, single cylinder diesel engine using low sulfur diesel fuel. This includes their formation, size distribution and number density. Experiments were conducted over a wide range of injection pressures, EGR rates, injection timings and swirl ratios, therefore covering both conventional and low temperature combustion regimes. A micro dilution tunnel was used to immediately dilute a small part of the exhaust gases by hot air. A Scanning Mobility Particle Sizer (SMPS) was used to measure the particulate size distribution and number density. Particulate mass was measured with a Tapered Element Oscillating Microbalance (TEOM). Analysis was made of the root cause of PM characterization and their relationship with the combustion process under different operating conditions.
Technical Paper

Power Management Software Interfaces Standard

2006-11-07
2006-01-3034
The current system requirements for the power management subsystem and ground combat vehicles for the Future Combat System require higher power and voltages for greater energy efficiency, advanced mobility, lethality and survivability. Efficient and reliable electrical power management is an essential capability within current force ground combat vehicles and will become even more important with the increased electrical power demands of future force vehicles which will exceed the capabilities of onboard power generation/storage technologies. This paper describes how to meet the aforementioned power distribution challenges through the development of a power management software interfaces standard that will provide the flexibility required by various programs and vehicles yet still provide a consistent framework for software development providing a consistent environment for all future Army programs.
Journal Article

Reduction of Steady-State CFD HVAC Simulations into a Fully Transient Lumped Parameter Network

2014-05-10
2014-01-9121
Since transient vehicle HVAC computational fluids (CFD) simulations take too long to solve in a production environment, the goal of this project is to automatically create a lumped-parameter flow network from a steady-state CFD that solves nearly instantaneously. The data mining algorithm k-means is implemented to automatically discover flow features and form the network (a reduced order model). The lumped-parameter network is implemented in the commercial thermal solver MuSES to then run as a fully transient simulation. Using this network a “localized heat transfer coefficient” is shown to be an improvement over existing techniques. Also, it was found that the use of the clustering created a new flow visualization technique. Finally, fixing clusters near equipment newly demonstrates a capability to track localized temperatures near specific objects (such as equipment in vehicles).
Technical Paper

System Failure Identification using Linear Algebra: Application to Cost-Reliability Tradeoffs under Uncertain Preferences

2012-04-16
2012-01-0914
Reaching a system level reliability target is an inverse problem. Component level reliabilities are determined for a required system level reliability. Because this inverse problem does not have a unique solution, one approach is to tradeoff system reliability with cost and to allow the designer to select a design with a target system reliability, using his/her preferences. In this case, the component reliabilities are readily available from the calculation of the reliability-cost tradeoff. To arrive at the set of solutions to be traded off, one encounters two problems. First, the system reliability calculation is based on repeated system simulations where each system state, indicating which components work and which have failed, is tested to determine if it causes system failure, and second, the task of eliciting and encoding the decision maker's preferences is extremely difficult because of uncertainty in modeling the decision maker's preferences.
X