Refine Your Search

Search Results

Viewing 1 to 13 of 13
Journal Article

A New Catalyzed HC Trap Technology that Enhances the Conversion of Gasoline Fuel Cold-Start Emissions

2018-04-03
2018-01-0938
Passive in-line catalyzed hydrocarbon (HC) traps have been used by some manufacturers in the automotive industry to reduce regulated tailpipe (TP) emissions of non-methane organic gas (NMOG) during engine cold-start conditions. However, most NMOG molecules produced during gasoline combustion are only weakly adsorbed via physisorption onto the zeolites typically used in a HC trap. As a consequence, NMOG desorption occurs at low temperatures resulting in the use of very high platinum group metal (PGM) loadings in an effort to combust NMOG before it escapes from a HC trap. In the current study, a 2.0 L direct-injection (DI) Ford Focus running on gasoline fuel was evaluated with full useful life aftertreatment where the underbody converter was either a three-way catalyst (TWC) or a HC trap. A new HC trap technology developed by Ford and Umicore demonstrated reduced TP NMOG emissions of 50% over the TWC-only system without any increase in oxides of oxygen (NOx) emissions.
Journal Article

An Approach to Controlling N2O Emission on HDD On-Road Applications

2016-04-05
2016-01-0948
Control of N2O emissions is a significant challenge for manufacturers of HDD On-Road engines and vehicles due to requirements for NOx control and Green House Gas (GHG) Phases I & II requirements. OEMs continually strive to improve BSFE which often results in increased engine out NOx (EO NOx) emissions. Consequently, the necessity for higher NOx conversions results in increased N2O emissions over traditional SCR and SCR+ASC catalysts systems [1]. This study explores methods to improve NOx conversion while reducing the SCR contribution of N2O across the exhaust after treatment systems. For example, combinations of two traditional SCR catalysts, one Iron based and another Copper based, can be utilized at various proportions by volume to optimize their SCR efficiency while minimizing the N2O emissions. Results show that a proper combination of catalysts volume can significantly reduce N2O levels while simultaneously reaching the highest levels of NOx performance achieved in the study.
Journal Article

Benefits of Pd Doped Zeolites for Cold Start HC/NOx Emission Reductions for Gasoline and E85 Fueled Vehicles

2018-04-03
2018-01-0948
In the development of HC traps (HCT) for reducing vehicle cold start hydrocarbon (HC)/nitrogen oxide (NOx) emissions, zeolite-based adsorbent materials were studied as key components for the capture and release of the main gasoline-type HC/NOx species in the vehicle exhaust gas. Typical zeolite materials capture and release certain HC and NOx species at low temperatures (<200°C), which is lower than the light-off temperature of a typical three-way catalyst (TWC) (≥250°C). Therefore, a zeolite alone is not effective in enhancing cold start HC/NOx emission control. We have found that a small amount of Pd (<0.5 wt%) dispersed in the zeolite (i.e., BEA) can significantly increase the conversion efficiency of certain HC/NOx species by increasing their release temperature. Pd was also found to modify the adsorption process from pure physisorption to chemisorption and may have played a role in the transformation of the adsorbed HCs to higher molecular weight species.
Technical Paper

Consolidation of DOC and DPF Functions into a Single Component

2019-04-02
2019-01-0583
Diesel Particulate Filters (DPFs) are in common use in many applications for particulate matter (PM) control. Most examples of DPF usage follow a Diesel Oxidation Catalyst (DOC) providing NO2 for passive soot oxidation and fuel burning for active soot regeneration. The DPF is often catalyzed, (CDPF) to enhance passive regeneration by NO2, and to assist active regeneration by burning CO resulting from soot oxidation and any hydrocarbons passing through the DOC. Some applications with favorable NOx to PM ratios can operate without active regeneration, including applications with only CDPF for cost and packaging space savings. However, eliminating the DOC for applications that require both types of regeneration is difficult, as active regeneration must be accomplished by burning fuel within the CDPF, while adequately burning soot near the front.
Technical Paper

Durability of an UF HC Trap/SCR Catalyst System Applied to a 4-Cylinder PZEV Calibrated Vehicle

2018-04-03
2018-01-0336
A 1.0 L underfloor converter of a 1.4 L PZEV calibrated vehicle was replaced with a 1.26 L HC trap and a 1.26 L SCR catalyst. The HC trap consisted of a zeolitic storage layer beneath a three-way catalyst layer. A newly developed catalyzed HC trap technology containing Pd/Rh was used in the current study. Increased trapping efficiency and conversion was assigned to rapid and efficient polymerization of small alkenes and aromatics coupled with more efficient combustion before release. The new trap features include the presence of strong Brønsted acidity, precious metals such as Pd and a base Mn+ redox active metal. The HC trap was followed by an SCR catalyst for NOx clean-up. The production close-coupled catalyst and replacement underfloor catalysts (HC trap and SCR) were aged on a combination of rural and highway roads for 150,000 miles. Peak bed temperatures during road aging of the HC Trap and SCR catalyst were approximately 600 °C.
Technical Paper

Effects of Fuel Sulfur on FTP NOx Emissions from a PZEV 4 Cylinder Application

2011-04-12
2011-01-0300
FTP emissions were measured on a 2009MY, 4 cylinder 2.4L Malibu PZEV vehicle with 3 and 33 ppm sulfur fuel. The exhaust system employed one close-coupled and one under floor converter. FTP evaluations with Phase-II certification fuel with 33 ppm sulfur exhibited increasing NOx emissions with subsequent FTP evaluations (NOx creep). In an effort to minimize NOx creep, FTP preparation cycles and low sulfur fuels were investigated. Results indicate that utilizing the US06 cycle in between subsequent FTP's can mitigate NOx creep. FTP evaluations with 3 ppm sulfur fuel exhibited no NOx creep regardless of FTP preparation cycle and yielded overall lower NOx emissions.
Technical Paper

Evaluation of Field NOx Performance of Diesel Vehicles using ECM - Provided OBD/SAEJ1979 Data

2015-04-14
2015-01-1067
Investigations of on-road emissions performance of vehicles have been made using various methods and instrumentation, some of which are very complex and costly. For the particular case of NOx emissions on Diesel road vehicles equipped with SCR catalysts (Selective Catalytic Reduction), many of these vehicles are equipped with NOx sensor(s) for the purpose of OBD (On-Board Diagnostics), and the ECU (Engine Control Unit) makes this data available via the diagnostic connector under the SAEJ1979 protocol for light duty vehicles. Data for mass air flow and fuel flow are also available per J1979, so the ongoing NOx mass flow can be estimated when the NOx sensors are active with no additional instrumentation. Heavy duty pickup trucks with SCR systems from 3 major US manufacturers, each certified to the optional chassis certification of 0.2 g/mi NOx on the FTP75, were obtained to be evaluated for SCR system behavior under normal driving conditions.
Technical Paper

Four Season Field Aging for SCR on DPF (SDPF) on a Light Heavy Duty Application

2016-04-05
2016-01-0929
There is growing interest in application of SCR on DPF (SDPF) for light and heavy duty applications, particularly to provide improvements in cold start emissions, as well as improvements in system cost and packaging [1, 2, 3]. The first of systems containing SDPF are just coming to market, with additional introductions expected, particularly for light duty and non-road applications [4]. To provide real world testing for a new SDPF product design prior to availability of OEM SDPF applications, an SDPF and one SCR catalyst were substituted in place of the original two SCR catalysts and a catalyzed diesel particulate filter (CDPF) on a Ford F250 HD pickup. To ensure that the on-road emissions would be comparable to the production system replaced, and to make sure that the control system would be able to operate without detecting some difference in behavior and seeing this as a fault, initial chassis dynamometer work was done before putting the vehicle on the road.
Journal Article

Investigation of LEV-III Aftertreatment Designs

2011-04-12
2011-01-0301
Proposed LEV-III emission level will require improvements in NMOG, CO and NOx emissions as measured over FTP and US06 emission cycles. Incremental improvements in washcoat technologies, cold start calibration and catalyst system design are required to develop a cost effective solution set. New catalyst technologies demonstrated both lower HC and NOx emissions with 25% less platinum group metals (PGM). FTP and US06 emissions were measured on a 4-cylinder 2.4L application which compares a close-coupled converter and close-coupled + underfloor converter systems. A PGM placement study was performed with the close-coupled converter system employing these new catalyst technologies. Emissions results suggest that the placement of PGM is critical in minimizing emissions and PGM costs.
Journal Article

Low Cost LEV-III, Tier-III Emission Solutions with Particulate Control using Advanced Catalysts and Substrates

2016-04-05
2016-01-0925
A production calibrated GTDI 1.6L Ford Fusion was used to demonstrate low HC, CO, NOx, PM (particulate mass), and PN (particulate number) emissions using advanced catalyst technologies with newly developed high porosity substrates and coated GPFs (gasoline particulate filters). The exhaust system consisted of 1.2 liters of TWC (three way catalyst) in the close-coupled position, and 1.6L of coated GPF in the underfloor position. The catalysts were engine-aged on a dynamometer to simulate 150K miles of road aging. Results indicate that ULEV70 emissions can be achieved at ∼$40 of PGM, while also demonstrating PM tailpipe performance far below the proposed California Air Resources Board (CARB) LEV III limit of 1 mg/mi. Along with PM and PN analysis, exhaust system backpressure is also presented with various GPF designs.
Journal Article

Passive Hydrocarbon Trap to Enable SULEV-30 Tailpipe Emissions from a Flex-Fuel Vehicle on E85 Fuel

2018-04-03
2018-01-0944
Future LEV-III tailpipe (TP) emission regulations pose an enormous challenge forcing the fleet average of light-duty vehicles produced in the 2025 model year to perform at the super ultralow emission vehicle (SULEV-30) certification levels (versus less than 20% produced today). To achieve SULEV-30, regulated TP emissions of non-methane organic gas (NMOG) hydrocarbons (HCs) and oxygenates plus oxides of nitrogen (NOx) must be below a combined 30 mg/mi (18.6 mg/km) standard as measured on the federal emissions certification cycle (FTP-75). However, when flex-fuel vehicles use E85 fuel instead of gasoline, NMOG emissions at cold start are nearly doubled, before the catalytic converter is active. Passive HC traps (HCTs) are a potential solution to reduce TP NMOG emissions. The conventional HCT design was modified by changing the zeolite chemistry so as to improve HC retention coupled with more efficient combustion during the desorption phase.
Journal Article

Performance and Sulfur Effect Evaluation of Tier 4 DOC+SCR Systems for Vanadia, Iron, and Copper SCR

2014-04-01
2014-01-1519
Non-road Tier 4 Final emissions standards offer opportunities for engines to be certified with DOC + SCR aftertreatment systems (ATS), where particulate matter (PM) emissions will be controlled by engine measures. These non-filter systems will not experience high thermal conditions common for filter regeneration and, therefore, will not have the secondary benefit of thermal events removing sulfur from the DOC and SCR aftertreatment. An experimental program was conducted on DOC + SCR systems in which the DOC was selected for the anticipated NO2 and sulfur management requirements of a fixed volume of 3 SCR types (vanadia, copper and iron). Each system was optimized to NOx conversion levels of 90%+ on NRTC cycles then exposed to accelerated sulfur poisoning and various cycles of increasing temperature after each poisoning to observe the performance recovery of the system. Specific sulfur management strategies are defined, depending on technology.
Technical Paper

Robust SCR Design Against Environmental Impacts

2016-04-05
2016-01-0954
Significant reduction in Nitrogen Oxide (NOx) emissions will be required to meet LEV III Emissions Standards for Light Duty Diesel passenger vehicles (LDD). As such, Original Equipment Manufacturers (OEMs) are exploring all possible aftertreatment options to find the best balance between performance, robustness and cost. The primary technology adopted by OEMs in North America to achieve low NOx levels is Selective Catalytic Reduction (SCR) catalyst. The critical parameters needed for SCR to work properly are: an appropriate reductant such as ammonia (NH3) typically provided as urea, adequate operating temperatures, and optimum Nitrogen Dioxide (NO2) to NOx ratios (NO2/NOx). The NO2/NOx ratio is mostly influenced by Precious Group Metals (PGM) containing catalysts located upstream of the SCR catalyst. Different versions of zeolite based SCR technologies are available on the market today and these vary in their active metal type (iron, copper, vanadium), and/or zeolite type.
X