Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Fuzzy Decision-Making System for Automotive Application

1998-02-23
980519
Fault diagnosis for automotive systems is driven by government regulations, vehicle repairability, and customer satisfaction. Several methods have been developed to detect and isolate faults in automotive systems, subsystems and components with special emphasis on those faults that affect the exhaust gas emission levels. Limit checks, model-based, and knowledge-based methods are applied for diagnosing malfunctions in emission control systems. Incipient and partial faults may be hard to detect when using a detection scheme that implements any of the previously mentioned methods individually; the integration of model-based and knowledge-based diagnostic methods may provide a more robust approach. In the present paper, use is made of fuzzy residual evaluation and of a fuzzy expert system to improve the performance of a fault detection method based on a mathematical model of the engine.
Technical Paper

A New Hardware-Assisted Inlet Port Development Process for Diesel Engines Using Doppler Global Velocimetry

2005-04-11
2005-01-0640
As more virtual product development is integrated into the mass-production development process and overall development times are shortened, efficient intake-port design requires closer cooperation between design, simulation and test engineers. Doppler Global Velocimetry (DGV) has become an important link in the overall intake-port development process as it provides 3D-vector fields of flow velocity. Hence, it can be used to make direct comparisons with 3D-CFD-simulation results. The present paper describes the hardware-assisted inlet port development process for diesel engines, the cooperation among port design, 3D-CFD-simulation with the creation of alternative geometries and DGV flow-measurement of preferred variants with their capability of checking and improving simulation results.
Technical Paper

A Study of Jackknife Stability of Class VIII Vehicles with Multiple Trailers with ABS Disc/Drum Brakes

2004-03-08
2004-01-1741
This study investigated the jackknife stability of Class VIII double tractor-trailer combination vehicles that had mixed braking configurations between the tractor and trailers and dolly (e.g. ECBS disc brakes on the tractor and pneumatic drum brakes on the trailers and dolly). Brake-in-turn maneuvers were performed with varying vehicle loads and surface conditions. Conditions with ABS ON for the entire vehicle (and select-high control algorithm on the trailers and dolly) found that instabilities (i.e. lane excursions and/or jackknifes) were exhibited under conditions when the surface friction coefficient was 0.3. It was demonstrated that these instabilities could be avoided while utilizing a select-low control algorithm on the trailers and dolly. Simulation results with the ABS OFF for the tractor showed that a tractor equipped with disc brakes had greater jackknife stability.
Technical Paper

A Study of Vehicle Response Asymmetries During Severe Driving Maneuvers

2004-03-08
2004-01-1788
During Phase VI of the National Highway Traffic Safety Administration's (NHTSA) Light Vehicle Rollover Research Program, three of the twenty-six light vehicles tested exhibited significant response asymmetries with respect to left versus right steer maneuvers. This paper investigates possible vehicle asymmetric characteristics and unintended inputs that may cause vehicle asymmetric response. An analysis of the field test data, results from suspension and steering parameter measurements, and a summary of a computer simulation study are also given.
Technical Paper

Acoustic Characteristics of Coupled Dissipative and Reactive Silencers

2003-05-05
2003-01-1643
The acoustic characteristics of a hybrid silencer consisting of two dissipative chambers and a Helmholtz resonator are investigated first computationally and experimentally. Complex wave number and characteristic impedance are used for the dissipative chambers to account for the wave propagation through absorbing material. Three-dimensional boundary element method (BEM) is employed to predict the transmission loss in the absence of mean flow and the predictions are compared with the experimental results obtained from an impedance tube setup. Noting that the long connecting tube between acoustic elements may reduce the transmission loss near the resonance frequency, two alternative hybrid silencers with short connecting tubes are also investigated by BEM. The present study shows the effectiveness of hybrid silencers over a wide frequency range and demonstrates the importance of understanding each acoustic element, as well as their interaction in designing silencers.
Technical Paper

Advantages of Structural Composites in Class 8 Truck Suspensions

1996-10-01
962236
The Liteflex™ composite spring has been manufactured by Delphi Chassis Systems, a division of Delphi Automotive Systems, since 1981 when it was introduced on the Chevrolet Corvette. In its early history, applications concentrated on passenger cars and vans. Over the past decade, however, composite engineering development has also focused on heavy duty suspension applications for tractors and trailers. The results include a Liteflex™ trailer suspension spring, a Liteflex™ tractor steer axle spring a Liteflex™ tractor drive axle spring, and a Litecast™ suspension link. A typical tandem axle trailer suspension incorporates four 3-leaf steel springs. Replacing each with a 13 kg lighter Liteflex™ spring offers a weight savings of 52 kg (115 lb.). This includes the assembly and mounting hardware. For the tractor, replacing two 2-leaf steel steer axle springs with Liteflex™ springs offers a combined weight savings of 55 kg (120 lb.).
Technical Paper

An Investigation of Shaft Dynamic Effects on Gear Vibration and Noise Excitations

2003-05-05
2003-01-1491
Transmission error has long been identified to be the main exciter of gear whine noise. This research effort seeks to investigate the mechanisms and principal controlling factors that affect the actual noise generation from a typical gearbox housing due to transmission error excitations. The insight gained is expected to help in identifying possible noise control procedures in typical gearing applications. The example gearbox of this paper is an aircraft auxiliary-drive idler gearbox run at low load so that transmission error is the primary mesh excitation. A limited set of dynamic noise and vibration data are collected in transient speed run-ups. A contact-mechanics gear-tooth model is used to predict the static transmission error at each mesh. A finite-element model of the shafting that incorporates complex shaft and bearing data is used to predict the shaft dynamics with the static transmission error at the gear mesh(es) as the sole excitation.
Technical Paper

Analysis and Development of A Real-Time Control Methodology in Resistance Spot Welding

1991-02-01
910191
The single-parameter, in-process monitor and automatic control systems for the resistance spot welding process have been studied by many investigators. Some of these have already been commercialized and used by sheet metal fabricators. These control systems operate primarily on one of the three process parameters: maximum voltage or voltage drop, dynamic resistance, or thermal expansion between electrodes during nugget formation. Control systems based on voltage or dynamic resistance have been successfully implemented for industrial applications. A great amount of experience on these two control methods has been accumulated through trial-and-error approaches. The expansion-based control system is not commonly utilized due to lack of experience and understanding of the process. Since the expansion displacement between electrodes during welding responds directly to the weld nugget formation, this control parameter provides a better means to produce more precise spot welds.
Technical Paper

Application of Anthropomorphic Test Device Crash Test Kinetics to Post Mortem Human Subject Lower Extremity Testing

2006-04-03
2006-01-0251
The primary goal of the current study was to determine ATD lower extremity loading characteristics seen in frontal crash tests and apply these characteristics to isolated PMHS lower extremity impacts. Essentially, the study attempted to re-create the kinetics experienced by the Hybrid III 50th percentile ATD (HIII) in frontal crash tests and apply this crash test loading scenario directly to PMHS specimens efficiently and while maximizing the utilization of a small number of cadaver subjects. The secondary goal of this study was to determine the relationship between PMHS and HIII lower extremity impact response. Based on this comparison, it was anticipated that PMHS posterior cruciate ligament (PCL) injury threshold and timing could be related to knee shear in the HIII ball-bearing knee slider mechanism. HIII lower extremity loading was analyzed from a series of twenty-eight (28) frontal barrier or vehicle to vehicle crash tests from late model vehicles.
Technical Paper

Application of Force Balance Method in Accident Reconstruction

2005-04-11
2005-01-1188
In the field of accident reconstruction, there has been a significant amount of effort devoted to the calculation and derivation of vehicle crush energy and vehicle stiffness. Crush energy is usually calculated with a crush profile and crush stiffness. But, oftentimes, crush profiles and/or crush stiffnesses are not available and accident constructionists face the situation of insufficient information. In some such cases, the force balance method can be used to reduce the uncertainty. The method follows from Newton's Third Law, i.e., the impact force exerted on one vehicle is balanced by the force exerted on the other vehicle. With the help of this method, crush profile or crush stiffness can be derived. As a result, the crush energy can then be calculated with improved accuracy. This ultimately increases the accuracy of the overall accident reconstruction. In this paper, examples will be given to illustrate the use of such a methodology.
Technical Paper

Application of Model-Based Design Techniques for the Control Development and Optimization of a Hybrid-Electric Vehicle

2009-04-20
2009-01-0143
Model-based design is a collection of practices in which a system model is at the center of the development process, from requirements definition and system design to implementation and testing. This approach provides a number of benefits such as reducing development time and cost, improving product quality, and generating a more reliable final product through the use of computer models for system verification and testing. Model-based design is particularly useful in automotive control applications where ease of calibration and reliability are critical parameters. A novel application of the model-based design approach is demonstrated by The Ohio State University (OSU) student team as part of the Challenge X advanced vehicle development competition. In 2008, the team participated in the final year of the competition with a highly refined hybrid-electric vehicle (HEV) that uses a through-the-road parallel architecture.
Technical Paper

Application of the Extended Kalman Filter to a Planar Vehicle Model to Predict the Onset of Jackknife Instability

2004-03-08
2004-01-1785
The widely used Extended Kalman Filter (EKF) is applied to a planar model of an articulated vehicle to predict jackknifing events. The states of hitch angle and hitch angle rate are estimated using a vehicle model and the available or “measured” states of lateral acceleration and yaw rate from the prime mover. Tuning, performance, and compromises for the EKF in this application are discussed. This application of the EKF is effective in predicting the onset of instability for an articulated vehicle under low-μ and low-load conditions. These conditions have been shown to be most likely to render heavy articulated vehicles vulnerable to jackknife instability. Options for model refinements are also presented.
Journal Article

Assessment of Advanced SGS Models for LES Analysis of ICE Wall-Bounded Flows - Part I: Basic Test Case

2016-03-14
2016-01-9041
Large Eddy Simulation (LES) represents nowadays one of the most promising techniques for the evaluation of the dynamics and evolution of turbulent structures characterizing internal combustion engines (ICE). In the present paper, subdivided into two parts, the capabilities of the open-source CFD code OpenFOAM® v2.3.0 are assessed in order to evaluate its suitability for engine cold flow LES analyses. Firstly, the code dissipative attitude is evaluated through an inviscid vortex convection test to ensure that the levels of numerical dissipation are compatible with LES needs. Quality and completeness estimators for LES simulations are then proposed. In particular the Pope M parameter is used as a LES completeness indicator while the LSR parameter provides useful insights far calibrating the grid density. Other parameters such as the two-grid LESIQk index are also discussed.
Technical Paper

Automated TARA Framework for Cybersecurity Compliance of Heavy Duty Vehicles

2024-04-09
2024-01-2809
Recent advancements towards autonomous heavy-duty vehicles are directly associated with increased interconnectivity and software driven features. Consequently, rise of this technological trend is bringing forth safety and cybersecurity challenges in form of new threats, hazards and vulnerabilities. As per the recent UN vehicle regulation 155, several risk-based security models and assessment frameworks have been proposed to counter the growing cybersecurity issues, however, the high budgetary cost to develop the tool and train personnel along with high risk of leakage of trade secrets, hinders the automotive manufacturers from adapting these third party solutions. This paper proposes an automated Threat Assessment & Risk Analysis (TARA) framework aligned with the standard requirements, offering an easy to use and fully customizable framework. The proposed framework is tailored specifically for heavy-duty vehicular networks and it demonstrates its effectiveness on a case study.
Technical Paper

Biomechanical Responses of PMHS Subjected to Abdominal Seatbelt Loading

2016-11-07
2016-22-0004
Past studies have found that a pressure based injury risk function was the best predictor of liver injuries due to blunt impacts. In an effort to expand upon these findings, this study investigated the biomechanical responses of the abdomen of post mortem human surrogates (PMHS) to high-speed seatbelt loading and developed external response targets in conjunction with proposing an abdominal injury criterion. A total of seven unembalmed PMHS, with an average mass and stature of 71 kg and 174 cm respectively were subjected to belt loading using a seatbelt pull mechanism, with the PMHS seated upright in a free-back configuration. A pneumatic piston pulled a seatbelt into the abdomen at the level of the umbilicus with a nominal peak penetration speed of 4.0 m/s. Pressure transducers were placed in the re-pressurized abdominal vasculature, including the inferior vena cava (IVC) and abdominal aorta, to measure internal pressure variation during the event.
Technical Paper

Biomechanical Responses of PMHS in Moderate-Speed Rear Impacts and Development of Response Targets for Evaluating the Internal and External Biofidelity of ATDs

2012-10-29
2012-22-0004
The objectives of this study were to obtain biomechanical responses of post mortem human subjects (PMHS) by subjecting them to two moderate-speed rear impact sled test conditions (8.5g, 17 km/h; 10.5g, 24 km/h) while positioned in an experimental seat system, and to create biomechanical targets for internal and external biofidelity evaluation of rear impact ATDs. The experimental seat was designed to measure external loads on the head restraint (4 load cells), seat back (6 load cells), and seat pan (4 load cells) such that subject dynamic interaction with the seat could be evaluated. This seat system was capable of simulating the dynamic characteristics of modern vehicle seat backs by considering the moment-rotation properties of a typical passenger vehicle, thus providing a more realistic test environment than using a rigid seat with a non-rotating seat back as done in previous studies.
Technical Paper

CFRP Crash Absorbers in Small UAV: Design and Optimization

2015-09-15
2015-01-2461
The high number of hull losses is a main concern in the UAV field, mostly due to the high cost of on-board equipment. A crashworthiness design can be helpful to control the extent and position of crash impact damage, minimizing equipment losses. However, the wide use of composite materials has recently put the accent on the lack of data about the behavior of these structures under operative loads, such as the crash conditions. This paper presents the outcome of a set of tests carried out to achieve a controlled crush of UAV structures, and to maximize the Specific Energy Absorption. In this work, a small-scale experimental test able to characterize the energy absorption of a Carbon-fiber-reinforced polymer under compression was developed introducing self-supporting sinusoidal shape specimens, which avoid the need for complex anti-buckling devices.
Technical Paper

Calibration Process for SCR Only TIER4i Engine for Construction Equipment

2012-09-24
2012-01-1954
The current legislation for industrial applications and construction equipment including earthmoving machines and crane engines allows different strategies to fulfill the corresponding exhaust emission limits. Liebherr Machines Bulle SA developed their engines to accomplish these limits using SCRonly technology. IAV supported this development, carrying out engine as well as SCR aftertreatment system and vehicle calibration work including the OBD and NOx Control System (NCS) calibration, as well as executing the homologation procedures at the IAV development center. The engines are used in various Liebherr applications certified for EU Stage IIIb, EPA TIER 4i, China GB4 and IMO MARPOL Tier II according to the regulations “97/68/EC”, “40 CFR Part 1039”, “GB17691-2005” and “40 CFR Parts 9, 85, et al.” using the same SCR hardware for all engine power variants of the corresponding I6 and V8 engine families.
Technical Paper

Camera Based Automated Lane Keeping Application Complemented by GPS Localization Based Path Following

2018-04-03
2018-01-0608
Advances in sensor solutions in the automotive sector make it possible to develop better ADAS and autonomous driving functions. One of the main tasks of highway chauffeur and highway pilot automated driving systems is to keep the vehicle between the lane lines while driving on a pre-defined route. This task can be achieved by using camera and/or GPS to localize the vehicle between the lane lines. However, both sensors have shortcomings in certain scenarios. While the camera does not work when there are no lane lines to be detected, an RTK GPS can localize the vehicle accurately. On the other hand, GPS requires at least 3 satellite connections to be able to localize the vehicle and more satellite connections and real-time over-the-air corrections for lane-level positioning accuracy. If GPS localization fails or is not accurate enough, lane line information from the camera can be used as a backup.
Technical Paper

Characterization of Vehicle Occupant Compartment Material Properties Using MADYMO: Methodology and Validation

2009-06-09
2009-01-2260
During a motor-vehicle collision, an occupant may interact with a variety of interior structures. The material properties and construction of these structures can directly affect the occupant's kinetic response. Simulation tools such as MADYMO (Mathematical Dynamical Models) can be used to estimate the forces imparted to an occupant for injury mechanism and causation evaluation relative to a particular event. Depending on the impact event and the specific injury mechanism being evaluated, the selection of proper material characteristics can be quite important. A comprehensive literature review of MADYMO studies illustrates the prevalent use of generic material characteristics and the need for improved property estimation and implementation methods.
X