Refine Your Search

Topic

Search Results

Technical Paper

3D Large Scale Simulation of the High-Speed Liquid Jet Atomization

2007-04-16
2007-01-0244
In this paper three-dimensional Large Eddy Simulations (i.e., LES) by using a PLIC-VOF method have been adopted to investigate the atomization process of round liquid jets issuing from automotive multi-hole injector-like nozzles. LES method is used to compute directly the effect of the large flow structure, being the smallest one modelled. A mesh having a cell size of 4 μm was used in order to derive a statistics of the detached liquid structures, i.e. droplets and ligaments. The latter have been identified by using an algorithm coded by authors. Cavitation modeling has not been included in the present computations. Two different mean injection nozzle flow velocities of 50 m/s and 270 m/s, corresponding to two mean nozzle flow Reynolds numbers of 1600 and 8700, respectively, have been considered in the calculations as representative of laminar and turbulent nozzle flow conditions.
Technical Paper

A RANS CFD 3D Methodology for the Evaluation of the Effects of Cycle By Cycle Variation on Knock Tendency of a High Performance Spark Ignition Engine

2014-04-01
2014-01-1223
Knocking combustions heavily limits the efficiency of Spark Ignition engines. The compression ratio is limited in the design stage of the engine development, letting to Spark Advance control the task of reducing the odds of abnormal combustions. A detailed analysis of knocking events can help improving engine performance and diagnosis strategies. An effective way is to use advanced 3D CFD (Computational Fluid Dynamics) simulation for the analysis and prediction of combustion performance. Standard 3D CFD approach is based on RANS (Reynolds Averaged Navier Stokes) equations and allows the analysis of the mean engine cycle. However knocking phenomenon is not deterministic and it is heavily affected by the cycle to cycle variation of engine combustions. A methodology for the evaluation of the effects of CCV (Cycle by Cycle Variability) on knocking combustions is here presented, based on both the use of Computation Fluid Dynamics (CFD) tools and experimental information.
Journal Article

Acoustic Emission Processing for Turbocharged GDI Engine Control Applications

2015-04-14
2015-01-1622
In the field of passenger car engines, recent research advances have proven the effectiveness of downsized, turbocharged and direct injection concepts, applied to gasoline combustion systems, to reduce the overall fuel consumption while respecting particularly stringent exhaust emissions limits. Knock and turbocharger control are two of the most critical factors that influence the achievement of maximum efficiency and satisfactory drivability, for this new generation of engines. The sound emitted from an engine encloses many information related to its operating condition. In particular, the turbocharger whistle and the knock clink are unmistakable sounds. This paper presents the development of real-time control functions, based on direct measurement of the engine acoustic emission, captured by an innovative and low cost acoustic sensor, implemented on a platform suitable for on-board application.
Technical Paper

Analysis of the Effects of Injection Pressure Variation in Gasoline Partially Premixed Combustion

2021-04-06
2021-01-0517
Compression-ignited engines are still considered the most efficient and reliable technology for automotive applications. However, current and future emission regulations, which severely limit the production of NOx, particulate matter and CO2, hinder the use of diesel-like fuels. As a matter of fact, the spontaneous ignition of directly-injected Diesel leads to a combustion process that is heterogeneous by nature, therefore characterized by the simultaneous production of particulate matter and NOx. In this scenario, several innovative combustion techniques have been investigated over the past years, the goal being to benefit from the high thermal efficiency of compression-ignited engines, which results primarily from high Compression Ratio and lean and unthrottled operation, while simultaneously mitigating the amount of pollutant emissions.
Technical Paper

Application of Acoustic and Vibration-Based Knock Detection Techniques to a High Speed Engine

2017-03-28
2017-01-0786
Knock control systems based on engine block vibrations analysis are widely adopted in passenger car engines, but such approach shows its main limits at high engine speeds, since knock intensity measurement becomes less reliable due to the increased background mechanical noise. For small two wheelers engines, knock has not been historically considered a crucial issue, mainly due to small-sized combustion chambers and mixture enrichment. Due to more stringent emission regulations and in search of reduced CO2 emissions, an effective on-board knock controller acquires today greater importance also for motorcycle applications, since it could protect the engine when different fuel types are used, and it could significantly reduce fuel consumption (by avoiding lambda enrichment and/or allowing higher compression ratios to be adopted). These types of engines typically work at high rotational speeds and the reduced signal to noise ratio makes knock onset difficult to identify.
Technical Paper

Application of a One-Dimensional Dilution and Evaporation Lubricant Oil Model to Predict Oil Evaporation under Different Engine Operative Conditions Considering a Large Hydrogen-Fuelled Engine

2023-08-28
2023-24-0009
The increasing environmental concern is leading to the need for innovation in the field of internal combustion engines, in order to reduce the carbon footprint. In this context, hydrogen is a possible mid-term solution to be used both in conventional-like internal combustion engines and in fuel cells (for hybridization purposes), thus, hydrogen combustion characteristics must be considered. In particular, the flame of a hydrogen combustion is less subjected to the quenching effect caused by the engine walls in the combustion chamber. Thus, the significant heating up of the thin lubricant layer upon the cylinder liner may lead to its evaporation, possibly and negatively affecting the combustion process, soot production. The authors propose an analysis which aims to address the behavior of different typical engine oils, (SAE0W30, SAE5W30, SAE5W40) under engine thermo-physical conditions considering a large hydrogen-fuelled engine.
Journal Article

Assessment of Advanced SGS Models for LES Analysis of ICE Wall-Bounded Flows - Part I: Basic Test Case

2016-03-14
2016-01-9041
Large Eddy Simulation (LES) represents nowadays one of the most promising techniques for the evaluation of the dynamics and evolution of turbulent structures characterizing internal combustion engines (ICE). In the present paper, subdivided into two parts, the capabilities of the open-source CFD code OpenFOAM® v2.3.0 are assessed in order to evaluate its suitability for engine cold flow LES analyses. Firstly, the code dissipative attitude is evaluated through an inviscid vortex convection test to ensure that the levels of numerical dissipation are compatible with LES needs. Quality and completeness estimators for LES simulations are then proposed. In particular the Pope M parameter is used as a LES completeness indicator while the LSR parameter provides useful insights far calibrating the grid density. Other parameters such as the two-grid LESIQk index are also discussed.
Technical Paper

Assessment of the Influence of Intake Duct Geometrical Parameters on the Tumble Motion Generation in a Small Gasoline Engine

2012-10-23
2012-32-0095
During the last years the deep re-examination of the engine design for lowering engine emissions involved two-wheel vehicles too. The IC engine overall efficiency plays a fundamental role in determining final raw emissions. From this point of view, the optimization of the in-cylinder flow organization is mandatory. In detail, in SI engines the generation of a coherent tumble vortex having dimensions comparable to the engine stroke could be of primary importance to extend the engines' ignition limits toward the field of the dilute/lean mixtures. For motorbike and motor scooter applications, the optimization of the tumble generation is considered an effective way to improve the combustion system efficiency and to lower emissions, considering also that the two-wheels layout represents an obstacle in adopting the advanced post-treatment concepts designed for automotive applications.
Technical Paper

CFD Analysis of a Two-Stroke Air Cooled Engine Designed for Handheld Products

2014-11-11
2014-32-0006
Still today, two-stroke engine layout is characterized by a wide share on the market thanks to its simpler construction that allows to reduce production and maintenance costs respecting the four-stroke engine. Two of the main application areas for the two-stroke engines are on small motorbikes and on handheld machines like chainsaws, brush cutters, and blowers. In both these application areas, two-stroke engines are generally equipped by a carburettor to provide the air/fuel mixture formation while the engine cooling is assured by forcing an air stream all around the engine head and cylinder surfaces. Focusing the attention on the two-stroke air-cooling system, it is not easy to assure its effectiveness all around the cylinder surface because the air flow easily separates from the cylinder walls producing local hot-spots on the cylinder itself. This problem can be bounded only by the optimization of the cylinder fin design placed externally to the cylinder surface.
Journal Article

Combination of In-Cylinder Pressure Signal Analysis and CFD Simulation for Knock Detection Purposes

2009-09-13
2009-24-0019
A detailed analysis of knocking events can help improving engine performance and diagnosis strategies. The paper aim is a better understanding of the phenomena involved in knocking combustions through the combination of CFD and signals analysis tools. CFD simulations have been used in order to reproduce knock effect on the in-cylinder pressure trace. In fact, the in-cylinder pressure signal holds information about waves propagation and heat losses: for the sake of the diagnosis it is important to relate knock severity to knock indexes values. For this purpose, a CFD model has been implemented, able to predict the combustion evolution with respect to Spark Advance, from non-knocking up to heavy knocking conditions. The CFD model validation phase is crucial for a correct representation of both regular and knocking combustions: the operation has been carried out by means of an accurate statistical analysis of experimental in-cylinder pressure data.
Journal Article

Combustion Indexes for Innovative Combustion Control

2017-09-04
2017-24-0079
The continuous development of modern Internal Combustion Engine (ICE) management systems is mainly aimed at combustion control improvement. Nowadays, performing an efficient combustion control is crucial for drivability improvement, efficiency increase and pollutant emissions reduction. These aspects are even more crucial when innovative combustions (such as LTC or RCCI) are performed, due to the high instability and the high sensitivity with respect to the injection parameters that are associated to this kind of combustion. Aging of all the components involved in the mixture preparation and combustion processes is another aspect particularly challenging, since not all the calibrations developed in the setup phase of a combustion control system may still be valid during engine life.
Technical Paper

Development and Experimental Validation of a Control-Oriented Empirical Exhaust Gas Temperature Model

2020-09-27
2020-24-0008
Modern turbo-charged downsized engines reach high values of specific power, causing a significant increase of the exhaust gas temperature. Such parameter plays a key role in the overall powertrain environmental impact because it strongly affects both the catalyst efficiency and the turbine durability. In fact, common techniques to properly manage the turbine inlet gas temperature are based on mixture enrichment, which causes both a steep increase in specific fuel consumption and a decrease of catalyst efficiency. At the test bench, exhaust gas temperature is typically measured using thermocouples that are not available for on-board application, and such information is processed to calibrate open-loop look-up-tables. A real-time, reliable, and accurate exhaust temperature model would then represent a strategic tool for improving the performance of the engine control system.
Technical Paper

Development of a Novel Approach for Non-Intrusive Closed-Loop Heat Release Estimation in Diesel Engines

2013-04-08
2013-01-0314
Over the past years, policies affecting pollutant emissions control for Diesel engines have become more and more restrictive. In order to meet such requirements, innovative combustion control methods have currently become a key factor. Several studies demonstrate that the desired pollutant emission reduction can be achieved through a closed-loop combustion control based on in-cylinder pressure processing. Nevertheless, despite the fact that cylinder pressure sensors for on-board application have been recently developed, large scale deployment of such systems is currently hindered by unsatisfactory long term reliability and high costs. Whereas both the accuracy and the reliability of pressure measurement could be improved in future years, pressure sensors would still be a considerable part of the cost of the entire engine management system.
Technical Paper

Ducati 999 Crankcase Strength Increase by Changing the Main Bearing Type

2005-04-11
2005-01-0882
In all Ducati L-twins the crankshaft supports are rolling bearings. Due to the higher performance, compactness and lightness, the service life of the crankcase is becoming shorter and in future can become critical in the Ducati 999, the most powerful engine of the Borgo Panigale company. The engine block sidewalls must be strengthened in order to improve the reliability of the component. This can be done by reducing the size of the main bearing housings by the adoption of the plain bearings which have smaller radial dimensions. The stress field of the Ducati 999 crankcase in the two different configurations is calculated by means of the finite element method, applying the engine load in the critical conditions.
Technical Paper

Effects of Initial Conditions in Multidimensional Combustion Simulations of HSDI Diesel Engines

1999-03-01
1999-01-1180
The effects of numerical methodology in defining the initial conditions and simulating the compression stroke in D.I. diesel engine CFD computations are studied. Lumped and pointwise approaches were adopted in assigning the initial conditions at IVC. The lumped approach was coupled with a two-dimensional calculation of the compression stroke. The pointwise methodology was based on the results of an unsteady calculation of the intake stroke performed by using the STAR-CD code in the realistic engine and port geometry. Full engine and 60 deg. sector meshes were used in the compression stroke calculations in order to check the accuracy of the commonly applied axi-symmetric fluid dynamics assumption. Analysis of the evolution of the main fluid dynamics parameters revealed that local conditions at the time of injection strongly depend on the numerical procedure adopted.
Technical Paper

Engine Acoustic Emission Used as a Control Input: Applications to Diesel Engines

2016-04-05
2016-01-0613
The need for strategies that allow managing combustion in an adaptive way has recently widely increased. Especially Diesel engines aimed for clean combustion require a precise control of the combustion outputs. Acoustic emission of internal combustion engines contains a lot of information related to engine behavior and working conditions. Mechanical noise and combustion noise are usually the main contributions to the noise produced by an engine. Combustion noise in particular can be used as an indicator of the combustion that is taking place inside the combustion chamber and therefore as a reference for the control strategy. This work discusses the correlations existing between in cylinder combustion and the acoustic emission radiated by the engine and presents a possible approach to use this signal in the engine management system for control purposes.
Journal Article

Experimental Characterization of the Geometrical Shape of ks-hole and Comparison of its Fluid Dynamic Performance Respect to Cylindrical and k-hole Layouts

2013-09-08
2013-24-0008
Diesel engine performances are strictly correlated to the fluid dynamic characteristics of the injection system. Actual Diesel engines employ injector characterized by micro-orifices operating at injection pressure till 20MPa. These main injection characteristics resulted in the critical relation between engine performance and injector hole shape. In the present study, the authors' attention was focused on the hole geometry influence on the main injector fluid dynamic characteristics. At this purpose, three different nozzle hole shapes were considered: cylindrical, k, and ks nozzle shapes. Because of the lack of information available about ks-hole real geometry, firstly it was completely characterized by the combined use of two non-destructive techniques. Secondly, all the three nozzle layouts were characterized from the fluid dynamic point of view by a fully transient CFD multiphase simulation methodology previously validated by the authors against experimental results.
Technical Paper

Experimental Investigation on the Effects of Cooled Low Pressure EGR and Water Injection on Combustion of a Turbocharged GDI Engine

2020-09-27
2020-24-0003
This work focuses on the effects of cooled Low Pressure EGR and Water Injection observed by conducting experimental tests consisting mainly of Spark Advance sweeps at different cooled LP-EGR and WI rates. The implications on combustion and main engine performance indexes are then analysed and modelled with a control-oriented approach, showing that combustion duration and phase and exhaust gas temperature are the main affected parameters. Results show that cooled LP-EGR and WI have similar effects, being the associated combustion speed decrease the main cause of exhaust gas temperature reduction. Experimental data is used to identify control-oriented polynomial models able to capture the effects of LP-EGR and WI on both these aspects. The limitations of LP-EGR are also explored, identifying maximum compressor volumetric flow and combustion stability as the main ones.
Technical Paper

Experimental Validation of a Model-Based Water Injection Combustion Control System for On-Board Application

2019-09-09
2019-24-0015
Water Injection (WI) has become a key technology for increasing combustion efficiency in modern GDI turbocharged engines. In fact, the addition of water mitigates significantly the occurrence of knock, reduces exhaust gas temperatures, and opens the possibility to reach optimum heat release phasing even at high load. This work presents the latest development of a model-based WI controller, and its experimental validation on a GDI TC engine. The controller is based on a novel approach that involves an analytic combustion model to define the spark advance (SA) required to reach a combustion phase target, considering injected water mass effects. The calibration and experimental validation of the proposed controller is shown in detail in the paper.
Technical Paper

Experimental and Numerical Investigation on the EGR System of a New Automotive Diesel Engine

2000-03-06
2000-01-0224
In this paper an integrated experimental and numerical approach is applied to optimize a new 2.5l, four valve, turbocharged DI Diesel engine, developed by VM Motori. The study is focused on the EGR system. For this engine, the traditional dynamometer bench tests provided 3-D maps for brake specific fuel consumption and emissions as a function of engine speed and brake mean effective pressure. Particularly, a set of operating conditions has been considered which, according to the present European legislation, are fundamental for emissions. For these conditions, the influence of the amount of EGR has been experimentally evaluated. A computational model for the engine cycle simulation at full load has been built by using the WAVE code. The model has been set up against experiments, since an excellent agreement has been reached for all the relevant thermo-fluid-dynamic parameters. The simulation model has been used to gain a better insight on the EGR system operations.
X