Refine Your Search

Topic

Search Results

Technical Paper

3D Large Scale Simulation of the High-Speed Liquid Jet Atomization

2007-04-16
2007-01-0244
In this paper three-dimensional Large Eddy Simulations (i.e., LES) by using a PLIC-VOF method have been adopted to investigate the atomization process of round liquid jets issuing from automotive multi-hole injector-like nozzles. LES method is used to compute directly the effect of the large flow structure, being the smallest one modelled. A mesh having a cell size of 4 μm was used in order to derive a statistics of the detached liquid structures, i.e. droplets and ligaments. The latter have been identified by using an algorithm coded by authors. Cavitation modeling has not been included in the present computations. Two different mean injection nozzle flow velocities of 50 m/s and 270 m/s, corresponding to two mean nozzle flow Reynolds numbers of 1600 and 8700, respectively, have been considered in the calculations as representative of laminar and turbulent nozzle flow conditions.
Technical Paper

A Numerical Methodology for the Multi-Objective Optimization of an Automotive DI Diesel Engine

2013-09-08
2013-24-0019
Nowadays, an automotive DI Diesel engine is demanded to provide an adequate power output together with limit-complying NOx and soot emissions so that the development of a specific combustion concept is the result of a trade-off between conflicting objectives. In other words, the development of a low-emission DI diesel combustion concept could be mathematically represented as a multi-objective optimization problem. In recent years, genetic algorithm and CFD simulations were successfully applied to this kind of problem. However, combining GA optimization with actual CFD-3D combustion simulations can be too onerous since a large number of simulations is usually required, resulting in a high computational cost and, thus, limiting the suitability of this method for industrial processes.
Journal Article

Acoustic Emission Processing for Turbocharged GDI Engine Control Applications

2015-04-14
2015-01-1622
In the field of passenger car engines, recent research advances have proven the effectiveness of downsized, turbocharged and direct injection concepts, applied to gasoline combustion systems, to reduce the overall fuel consumption while respecting particularly stringent exhaust emissions limits. Knock and turbocharger control are two of the most critical factors that influence the achievement of maximum efficiency and satisfactory drivability, for this new generation of engines. The sound emitted from an engine encloses many information related to its operating condition. In particular, the turbocharger whistle and the knock clink are unmistakable sounds. This paper presents the development of real-time control functions, based on direct measurement of the engine acoustic emission, captured by an innovative and low cost acoustic sensor, implemented on a platform suitable for on-board application.
Technical Paper

Airship and Hot Air Balloon Real Time Envelope Shape Prediction through a Cloth Simulation Technique

2015-09-15
2015-01-2578
The flight simulation of airships and hot air balloons usually considers the envelope geometry as a fixed shape, whose volume is eventually reduced by ballonets. However, the dynamic pressure or helium leaks in airships, and the release of air to allow descent in hot air balloons can significantly change the shape of the envelope leading to potential dangerous situations. In fact, in case of semi-rigid and non-rigid airships a reduction in envelope internal pressure can reduce the envelope bending stiffness leading to the loss of the typical axial-symmetric shape. For hot air balloons thing goes even worse since the lost of internal pressure can lead to the collapsing of the balloon shape to a sort of vertically stretched geometry (similar to a torch) which is not able to sustain the attached basket and its payload.
Journal Article

Assessment of the Influence of GDI Injection System Parameters on Soot Emission and Combustion Stability through a Numerical and Experimental Approach

2015-09-06
2015-24-2422
The next steps of the current European and US legislation, EURO 6c and LEV III, and the incoming new test cycles will impose more severe restrictions on pollutant emissions for Gasoline Direct Injection (GDI) engines. In particular, soot emission limits will represent a challenge for the development of this kind of engine concept, if injection and after-treatment systems costs are to be minimized at the same time. The paper illustrates the results obtained by means of a numerical and experimental approach, in terms of soot emissions and combustion stability assessment and control, especially during catalyst-heating conditions, where the main soot quantity in the test cycle is produced. A number of injector configurations has been designed by means of a CAD geometrical analysis, considering the main effects of the spray target on wall impingement.
Technical Paper

Assessment of the Influence of Intake Duct Geometrical Parameters on the Tumble Motion Generation in a Small Gasoline Engine

2012-10-23
2012-32-0095
During the last years the deep re-examination of the engine design for lowering engine emissions involved two-wheel vehicles too. The IC engine overall efficiency plays a fundamental role in determining final raw emissions. From this point of view, the optimization of the in-cylinder flow organization is mandatory. In detail, in SI engines the generation of a coherent tumble vortex having dimensions comparable to the engine stroke could be of primary importance to extend the engines' ignition limits toward the field of the dilute/lean mixtures. For motorbike and motor scooter applications, the optimization of the tumble generation is considered an effective way to improve the combustion system efficiency and to lower emissions, considering also that the two-wheels layout represents an obstacle in adopting the advanced post-treatment concepts designed for automotive applications.
Technical Paper

Automatic Combustion Control for Calibration Purposes in a GDI Turbocharged Engine

2014-04-01
2014-01-1346
Combustion phasing is crucial to achieve high performance and efficiency: for gasoline engines control variables such as Spark Advance (SA), Air-to-Fuel Ratio (AFR), Variable Valve Timing (VVT), Exhaust Gas Recirculation (EGR), Tumble Flaps (TF) can influence the way heat is released. The optimal control setting can be chosen taking into account performance indicators, such as Indicated Mean Effective Pressure (IMEP), Brake Specific Fuel Consumption (BSFC), pollutant emissions, or other indexes inherent to reliability issues, such as exhaust gas temperature, or knock intensity. Given the high number of actuations, the calibration of control parameters is becoming challenging.
Journal Article

Benchmarking Hybrid Concepts: On-Line vs. Off-Line Fuel Economy Optimization for Different Hybrid Architectures

2013-09-08
2013-24-0084
The recent advance in the development of various hybrid vehicle technologies comes along with the need of establishing optimal energy management strategies, in order to minimize both fuel economy and pollutant emissions, while taking into account an increasing number of state and control variables, depending on the adopted hybrid architecture. One of the objectives of this research was to establish benchmarking performance, in terms of fuel economy, for real time on-board management strategies, such as ECMS (Equivalent Consumption Minimization Strategy), whose structure has been implemented in a SIMULINK model for different hybrid vehicle concepts.
Technical Paper

CFRP Crash Absorbers in Small UAV: Design and Optimization

2015-09-15
2015-01-2461
The high number of hull losses is a main concern in the UAV field, mostly due to the high cost of on-board equipment. A crashworthiness design can be helpful to control the extent and position of crash impact damage, minimizing equipment losses. However, the wide use of composite materials has recently put the accent on the lack of data about the behavior of these structures under operative loads, such as the crash conditions. This paper presents the outcome of a set of tests carried out to achieve a controlled crush of UAV structures, and to maximize the Specific Energy Absorption. In this work, a small-scale experimental test able to characterize the energy absorption of a Carbon-fiber-reinforced polymer under compression was developed introducing self-supporting sinusoidal shape specimens, which avoid the need for complex anti-buckling devices.
Technical Paper

Combined Optimization of Energy and Battery Thermal Management Control for a Plug-in HEV

2019-10-07
2019-24-0249
This paper presents an optimization algorithm, based on discrete dynamic programming, that aims to find the optimal control inputs both for energy and thermal management control strategies of a Plug-in Hybrid Electric Vehicle, in order to minimize the energy consumption over a given driving mission. The chosen vehicle has a complex P1-P4 architecture, with two electrical machines on the front axle and an additional one directly coupled with the engine, on the rear axle. In the first section, the algorithm structure is presented, including the cost-function definition, the disturbances, the state variables and the control variables chosen for the optimal control problem formulation. The second section reports the simplified quasi-static analytical model of the powertrain, which has been used for backward optimization. For this purpose, only the vehicle longitudinal dynamics have been considered.
Journal Article

Coupling Between 1D-3D Simulation Results to Predict Cavitation in Motorcycle Forks

2009-11-02
2009-01-2680
Fork system is a primary component for motorcycles because it assures the contact between tires and road, therefore the safety and the driving feeling. Usually fork optimization and tuning are experimentally made involving the generation of a high large number of prototypes and an expensive experimental campaign. To reduce the design and the tuning phases of a generic damper system, the numerical simulation should be considered. In this paper, a one-dimensional (1D) model of fore-carriage forks for road applications is presented. The model was built-up in AMESim code. In particular, the authors’ attention was focused on the detection and analysis of cavitation phenomenon inside the fork. As well known, the cavitation is a complex three-dimensional (3D) phenomenon that implies the phase transition.
Journal Article

Design of Catalytic Devices by Means of Genetic Algorithm: Comparison Between Open-Cell Foam and Honeycomb Type Substrates

2016-04-05
2016-01-0965
Metallic foams or sponges are materials with a cell structure suitable for many industrial applications, such as reformers, heat catalytic converters, etc. The success of these materials is due to the combination of various characteristics such as mechanical strength, low density, high specific surface, good thermal exchange properties, low flow resistance and sound absorption. Different materials and manufacturing processes produce different type of structure and properties for various applications. In this work a genetic algorithm has been developed and applied to support the design of catalytic devices. In particular, two substrates were considered, namely the traditional honeycomb and an alternative open-cell foam type. CFD simulations of pressure losses and literature based correlations for the heat and mass transfer were used to support the genetic algorithm in finding the best compromise between flow resistance and pollutant abatement.
Technical Paper

Design, Optimization, Performances and Flight Operation of an All Composite Unmanned Aerial Vehicle

2013-09-17
2013-01-2192
Unmanned Aerial Vehicles (UAVs) provide the ability to perform a variety of experimental tests of systems and unproven research technologies, including new autopilot systems and obstacle avoidance capabilities, without risking the lives of human pilots. This paper describes the activities of design, optimization, and flight operations of a UAV conceived at Clarkson University (USA) and equipped to perform wind speed measurements to support wind farmsite planning. The UAV design has been assisted and validated by the use of an automatic virtual environment for the assisted design of civil UAVs. This tool can be used as a “computing machine” for civil UAVs. The operator inputs the mission profile and other generic parameters and data about performance, aerodynamics, and weight breakdown are extracted. A mathematical model of the UAV for flight simulation and its dynamic computations, along with automatic drawing is also produced.
Technical Paper

Development and Validation of a Control-Oriented Analytic Engine Simulator

2019-09-09
2019-24-0002
Due to the recent anti-pollution policies, the performance increase in Spark Ignition (SI) engines is currently under the focus of automotive manufacturers. This trend drives control systems designers to investigate accurate solutions and build more sophisticated algorithms to increase the efficiency of this kind of engines. The development of a control strategy is composed of several phases and steps, and the first part of such process is typically spent in defining and investigating the logic of the strategy. During this phase it is often useful to have a light engine simulator, which allows to have robust synthetic combustion data with a low calibration and computational effort. In the first part of this paper, a description of the control-oriented ANalytical Engine SIMulator (ANESIM) is carried out.
Technical Paper

Development of an Automatic Pipeline for Data Analysis and Pre-Processing for Data Driven-Based Engine Emission Modeling in a Real Industrial Application

2024-04-09
2024-01-2018
During the development of an Internal Combustion Engine-based powertrain, traditional procedures for control strategies calibration and validation produce huge amount of data, that can be used to develop innovative data-driven applications, such as emission virtual sensing. One of the main criticalities is related to the data quality, that cannot be easily assessed for such a big amount of data. This work focuses on an emission modeling activity, using an enhanced Light Gradient Boosting Regressor and a dedicated data pre-processing pipeline to improve data quality. First thing, a software tool is developed to access a database containing data coming from emissions tests. The tool performs a data cleaning procedure to exclude corrupted data or invalid parts of the test. Moreover, it automatically tunes model hyperparameters, it chooses the best set of features, and it validates the procedure by comparing the estimation and the experimental measurement.
Technical Paper

Experimental Validation of a Model-Based Water Injection Combustion Control System for On-Board Application

2019-09-09
2019-24-0015
Water Injection (WI) has become a key technology for increasing combustion efficiency in modern GDI turbocharged engines. In fact, the addition of water mitigates significantly the occurrence of knock, reduces exhaust gas temperatures, and opens the possibility to reach optimum heat release phasing even at high load. This work presents the latest development of a model-based WI controller, and its experimental validation on a GDI TC engine. The controller is based on a novel approach that involves an analytic combustion model to define the spark advance (SA) required to reach a combustion phase target, considering injected water mass effects. The calibration and experimental validation of the proposed controller is shown in detail in the paper.
Technical Paper

Fast Prototyping of a Racing Diesel Engine Control System

2008-12-02
2008-01-2942
This paper shows how Rapid Control Prototyping (RCP) and Computational Fluid Dynamics (CFD) techniques have been applied to design and implement an engine control system for a common rail diesel engine. The project aim is to setup a high performance engine in order to participate to the Italian Tractor Pulling Championship (Prostock category). The original engine is a John Deere 6081 Tier2 model, already equipped with a common rail system. Engine performance is substantially determined by the control system, which is in charge of limiting engine speed, boost pressure and Air to Fuel Ratio (AFR). Given that typically the information and equipment needed to change control parameters are not accessible to customers, the first step of the project has been to replace the original control system, while maintaining injectors and pumps. This solution can guarantee the best performance, but it requires time to design the new control system, both in terms of hardware and software.
Journal Article

Individual Cylinder Air-Fuel Ratio Control for Engines with Unevenly Spaced Firing Order

2017-03-28
2017-01-0610
The most recent European regulations for two- and three-wheelers (Euro 5) are imposing an enhanced combustion control in motorcycle engines to respect tighter emission limits, and Air-Fuel Ratio (AFR) closed-loop control has become a key function of the engine management system also for this type of applications. In a multi-cylinder engine, typically only one oxygen sensor is installed on each bank, so that the mean AFR of two or more cylinders rather than the single cylinder one is actually controlled. The installation of one sensor per cylinder is normally avoided due to cost, layout and reliability issues. In the last years, several studies were presented to demonstrate the feasibility of an individual AFR controller based on a single sensor. These solutions are based on the mathematical modelling of the engine air path dynamics, or on the frequency analysis of the lambda probe signal.
Technical Paper

Injection Pattern Investigation for Gasoline Partially Premixed Combustion Analysis

2019-09-09
2019-24-0112
Nowadays, compression-ignited engines are considered the most efficient and reliable technology for automotive applications. However, mainly due to the current emission regulations, that require increasingly stringent reductions of NOx and particulate matter, the use of diesel-like fuels is becoming a critical issue. For this reason, a large amount of research and experimentation is being carried out to investigate innovative combustion techniques suitable to simultaneously mitigate the production of NOx and soot, while improving engine efficiency. In this scenario, the combined use of compression-ignited engines and gasoline-like fuels proved to be very promising, especially in case the fuel is directly-injected in the combustion chamber at high pressure. The presented study analyzes the combustion process produced by the direct injection of small amounts of gasoline in a compression-ignited light-duty engine.
Technical Paper

Rapid Prototyping as a Tool to Support Wind Tunnel Testing of Unconventional Unmanned Airships

2013-09-17
2013-01-2193
Scaled models are often used to check the aerodynamic performance of full scale aircraft and airship concepts, which have gone through a conceptual and preliminary design process. Results from these tests can be quite useful to improve the design of unconventional airships whose aerodynamics might be quite different from classical configurations. Once the airship geometry has been defined, testing is required to acquire aerodynamic data necessary to implement the mathematical model of the airship needed by the flight control system to develop full autonomous capabilities. Rapid prototyping has the great potential of playing a beneficial role in unconventional autonomous airship design similarly to the success obtained in the design process of conventional aircrafts.
X