Refine Your Search

Topic

Author

Search Results

Technical Paper

1.9-Liter Four-Cylinder HCCI Engine Operation with Exhaust Gas Recirculation

2001-05-07
2001-01-1894
We present the effect of EGR, at a set fuel flow rate and intake temperature, on the operating parameters of timing of combustion, duration of combustion, power output, thermal efficiency, and NOx emission; which is remarkably low. We find that addition of EGR at constant inlet temperature and constant fuel flow rate has little effect on HCCI parameter of start of combustion (SOC). However, burn duration is highly dependent on the amount of EGR inducted. The experimental setup at UC Berkeley uses a 1.9-liter 4-cylinder diesel engine with a compression ratio of 18.8:1 (offered on a 1995 VW Passat TDI). The engine was converted to run in HCCI mode by addition of an 18kW air pre-heater installed in the intake system. Pressure traces were obtained using four water-cooled quartz pressure transducers, which replaced the Diesel fuel injectors. Gaseous fuel (propane or butane) flowed steadily into the intake manifold.
Technical Paper

A Mars Mission Simulation to Determine the Efficacy of 0.38 G as a Countermeasure to Microgravity Induced Bone Demineralization

2000-07-10
2000-01-2245
Physiological effects of prolonged exposure to microgravity are a major concern when considering crew health and performance during an interplanetary mission. Among the most mission-critical of these deleterious effects are the changes to the skeletal system. Loss of bone mineral density (BMD) can be approximated for outbound and inbound transit portions of a human Mars mission. However, the effect of Martian gravity (0.38G) on the skeletal system is not well understood. This paper presents an experimental design to study bone demineralization of weight bearing bones during prolonged exposure to the skeletal unloading of microgravity and reduced gravity (0.38G) environments and its implications for a human Mars mission.
Technical Paper

A Multi-Zone Model for Prediction of HCCI Combustion and Emissions

2000-03-06
2000-01-0327
Homogeneous Charge Compression Ignition (HCCI) combustion is a process dominated by chemical kinetics of the fuel-air mixture. The hottest part of the mixture ignites first, and compresses the rest of the charge, which then ignites after a short time lag. Crevices and boundary layers generally remain too cold to react, and result in substantial hydrocarbon and carbon monoxide emissions. Turbulence has little effect on HCCI combustion, and may be most important as a factor in determining temperature gradients and boundary layer thickness inside the cylinder. The importance of thermal gradients inside the cylinder makes it necessary to use an integrated fluid mechanics-chemical kinetics code for accurate predictions of HCCI combustion. However, the use of a fluid mechanics code with detailed chemical kinetics is too computationally intensive for today's computers.
Technical Paper

A Sequential Chemical Kinetics-CFD-Chemical Kinetics Methodology to Predict HCCI Combustion and Main Emissions

2012-04-16
2012-01-1119
This study presents the development of a new HCCI simulation methodology. The proposed method is based on the sequential coupling of CFD analysis prior to autoignition, followed by multi-zone chemical kinetics analysis of the combustion process during the closed valve period. The methodology is divided into three steps: 1) a 1-zone chemical kinetic model (Chemkin Pro) is used to determine either the intake conditions at IVC to achieve a desired ignition timing or the ignition timing corresponding with given IVC conditions, 2) the ignition timing and IVC conditions are used as input parameters in a CFD model (Fluent 6.3) to calculate the charge temperature profile and mass distribution prior to autoignition, and 3) the temperature profile and mass distribution are fed into a multi-zone chemical kinetic model (Chemkin Pro) to determine the main combustion characteristics.
Journal Article

A Study on Monetary Cost Analysis for Product-Line Architectures

2008-04-14
2008-01-0280
We present a cost model that analyzes monetary costs for a product-line architecture to help the optimization of the architecture. The paper illustrates the usefulness of this methodology in a case study based upon the design exploration of a product-line architecture for an active safety system.
Technical Paper

A Techno-Economic Analysis of PEV Battery Second Use: Repurposed-Battery Selling Price and Commercial and Industrial End-User Value

2012-04-16
2012-01-0349
Accelerated market penetration of plug-in electric vehicles (PEVs) is presently restricted by the high cost of batteries. Deployment of grid-connected energy storage, which could increase the reliability, efficiency, and cleanliness of the grid, is similarly inhibited by the cost of batteries. Research, development, and manufacturing are underway to reduce cost by lowering material costs, enhance process efficiencies, and increase production volumes. Another approach under consideration is to recover a fraction of the battery cost after the battery has been retired from vehicular service via reuse in other applications, where it may still have sufficient performance to meet the requirements of other energy-storage applications.
Technical Paper

Acoustic Noise Reduction in Automobile Alternator by Constrained Layer Damping of the Stator

1992-02-01
920407
1 Attenuation of acoustic noise from automobile components is important for passenger comfort. Since the alternator is one of the major sources of noise, many manufacturers have studied the various mechanisms which generate noise within an alternator as well as the methods to reduce the noise level. This paper presents the dynamic properties of the alternator with respect to the acoustic noise during current generation, and introduces a vibration damping structure based on experimental modal analysis. Rotating magnetic forces in a magnetic circuit (stator and rotor) can excite numerous structural resonances, resulting in acoustic noise. A modal analysis performed on the major magnetic circuit of the alternator (Nippondenso Co., Ltd.) revealed that the stator has elliptic, triangular and rectangular mode shapes in the radial coordinate plane, while the rotor does not have any significant resonances in the same 0 - 3 kHz region.
Technical Paper

Ammonia as a Spark Ignition Engine Fuel: Theory and Application

1966-02-01
660155
Anhydrous ammonia has been demonstrated to operate successfully as a fuel for spark ignition engines. Principal requirements are that it be introduced in the vapor phase and partly decomposed to hydrogen and nitrogen. Spark timing for maximum performance must be advanced slightly for ammonia but sensitivity to spark timing is little greater than with hydrocarbons. Increasing the cylinder wall temperature aids in effecting successful and reliable operation. The maximum theoretically possible indicated output using ammonia vapor is about 77% of that with hydrocarbon. Specific fuel consumption increase twofold at maximum power and 2-1/2 fold at maximum economy when using ammonia as a replacement for hydrocarbon.
Technical Paper

An Initial Study on Monetary Cost Evaluation for the Design of Automotive Electrical Architectures

2007-04-16
2007-01-1273
One of the many challenges facing electronic 1 system architects is how to provide a cost estimate related to design decisions over the entire life-cycle and product line of the architecture. Various cost modeling techniques may be used to perform this estimation. However, the estimation is often done in an ad-hoc manner, based on specific design scenarios or business assumptions. This situation may yield an unfair comparison of architectural alternatives due to the limited scope of the evaluation. A preferred estimation method would involve rigorous cost modeling based on architectural design cost drivers similar to those used in the manufacturing (e.g. process-based technical cost modeling) or in the enterprise software domain (e.g. COCOMO). This paper describes an initial study of a cost model associated with automotive electronic system architecture.
Technical Paper

An Investigation of the Effect of Fuel-Air Mixedness on the Emissions from an HCCI Engine

2002-05-06
2002-01-1758
This research work has focused on measuring the effect of fuel/air mixing on performance and emissions for a homogeneous charge compression ignition engine running on propane. A laser instrument with a high-velocity extractive probe was used to obtain time-resolved measurements of the fuel concentration both at the intake manifold and from the cylinder for different levels of fuel-air mixing. Cylinder pressure and emissions measurements have been performed at these mixing levels. From the cylinder pressure measurements, the IMEP and peak cylinder pressure were found. The fuel-air mixing level was changed by adding the fuel into the intake system at different distances from the intake valve (40 cm and 120 cm away). It was found that at the intake manifold, the fuel and air were better mixed for the 120 cm fuel addition location than for the 40 cm location.
Journal Article

Application of Corona Discharge Ignition in a Boosted Direct-Injection Single Cylinder Gasoline Engine: Effects on Combustion Phasing, Fuel Consumption, and Emissions

2016-01-03
2016-01-9045
The downsizing of internal combustion engines to increase fuel economy leads to challenges in both obtaining ignition and stabilizing combustion at boosted intake pressures and high exhaust gas recirculation dilution conditions. The use of non-thermal plasma ignition technologies has shown promise as a means to more reliably ignite dilute charge mixtures at high pressures. Despite progress in fundamental research on this topic, both the capabilities and operation implications of emerging non-thermal plasma ignition technologies in internal combustion engine applications are not yet fully explored. In this work, we document the effects of using a corona discharge ignition system in a single cylinder gasoline direct injection research engine relative to using a traditional inductive spark ignition system under conditions associated with both naturally aspirated (8 bar BMEP) and boosted (20 bar BMEP) loads at moderate (2000 rpm) and high (4000 rpm) engine speeds.
Technical Paper

Automotive Piston-Engine Noise And Its Reduction - A Literature Survey

1969-02-01
690452
This paper reviews the sources of externally radiated automotive piston engine and vehicle noise and describes them in detail. The effects of various design and operational characters on intensity and character of noise, noise measurement, and analysis and identifications procedures are given extensive examination. A summary of current research on the reduction of engine noise is presented.
Technical Paper

Burr Prevention and Minimization for the Aerospace Industry

1999-06-05
1999-01-2292
Burr research is undeniably highly complex. In order to advance understanding of the process involved several techniques are being implemented. First a detailed and thorough examination of the burr forming process is undertaken. The technique is difficult, intricate and time consuming, but delivers a large amount of vital physical data. This information is then used in the construction of empirical models and, in some case lead to development of FEM models. Finally using the model as a template, related burr formation problems that have not been physically examined can be simulated and the results used to control process planning resulting in the reduction of burr formation. We highlight this process by discussing current areas of research being followed at the University of California in collaboration with Boeing and the Consortium on Deburring and Edge Finishing (CODEF).
Technical Paper

Comparative Performance of Alcohol and Hydrocarbon Fuels

1964-01-01
640649
Three factors are of consequence when considering the comparative performance of alcohols and hydrocarbons as spark ignition engine fuels. These are: relative amounts of products of combustion produced per unit of inducted charge, energy inducted per unit of charge, and latent heat differences among the fuels. Simple analysis showed significant increases in output can be expected from the use of methyl alcohol as compared to hydrocarbon and somewhat lesser improvement can be expected from ethyl alcohol. Attendant increases in fuel consumption, disproportionate to the power increase, can also be predicted. More sophisticated analysis, based upon thermodynamic charts of combustion products, do not necessarily improve correspondence between prediction and engine results.
White Paper

Definitions for Terms Related to Shared Mobility and Enabling Technologies

2018-10-01
WP-0010
Increasingly, travelers are turning to shared mobility and enabling technologies (i.e., smartphone apps) to meet their mobility needs. A consequence of the ever-growing and ever-evolving landscape of shared mobility is the lack of standardized terms and definitions. The shared and digital mobility industry is challenged with discrepancies in use and definition of terms, which often create ambiguity and confusion for policymakers, regulatory agencies, and the broader public. In recognition of this challenge, the SAE Shared and Digital Mobility Committee embarked on the task of developing J3163™ – Taxonomy and Definitions for Terms Related to Shared Mobility and Enabling Technologies. This white paper provides an overview of the rationale, scope, key discussions held in the development of J3163TM, as well as guidance on how to use J3163TM.
Technical Paper

Design Space Exploration of Automotive Platforms in Metropolis

2006-04-03
2006-01-1468
Automotive control applications are implemented over distributed platforms consisting of a number of electronic control units (ECUs) connected by communication buses. During system development, the designer can explore a number of design alternatives: for example, software distribution, software architecture, hardware architecture, and network configuration. Exploring design alternatives efficiently and evaluating them to optimize metrics such as cost, time, resource utilization, and reliability provides an important competitive advantage to OEMs and helps minimize integration risks. We present a methodology (Platform-Based Design) and a framework (Metropolis) to support efficient architecture exploration. We have exercised the methodology and the capabilities of Metropolis for developing a library of automotive architecture components and performed design space exploration on a chassis control sub-system.
Technical Paper

Dynamics of Combustion in a Diesel Engine Under the Influence of Air/Fuel Ratio

2000-03-06
2000-01-0203
The dynamic stage of combustion - the intrinsic process for pushing the compression polytrope away from the expansion polytrope to generate the indicator work output of a piston engine - was studied to reveal the influence of the air/fuel ratio on the effectiveness with which the fuel was utilized. The results of tests carried out for this purpose, using a 12 liter diesel engine, were reported last year [SAE 1999-01-0517]. Presented here is an analytic interpretation of the data obtained for part-load operation at 1200 and 1800 rpm. A solution is thus provided for an inverse problem: deduction of information on the dynamic features of the exothermic process of combustion from measured pressure record. Provided thereby, in particular, is information on the effectiveness with which fuel was utilized in the course of this process - a parameter reflecting the effect of energy lost by heat transfer to the walls.
Technical Paper

Effect of Mixing on Hydrocarbon and Carbon Monoxide Emissions Prediction for Isooctane HCCI Engine Combustion Using a Multi-zone Detailed Kinetics Solver

2003-05-19
2003-01-1821
This research investigates how the handling of mixing and heat transfer in a multi-zone kinetic solver affects the prediction of carbon monoxide and hydrocarbon emissions for simulations of HCCI engine combustion. A detailed kinetics multi-zone model is now more closely coordinated with the KIVA3V computational fluid dynamics code for simulation of the compression and expansion processes. The fluid mechanics is solved with high spatial and temporal resolution (40,000 cells). The chemistry is simulated with high temporal resolution, but low spatial resolution (20 computational zones). This paper presents comparison of simulation results using this enhanced multi-zone model to experimental data from an isooctane HCCI engine.
Technical Paper

Emissions Performance of Oxygenate-in-Diesel Blends and Fischer-Tropsch Diesel in a Compression Ignition Engine

1999-10-25
1999-01-3606
Engine fuel tests were conducted with two oxygenates blended with conventional diesel and a synthetic Fisher-Tropsch (F-T) diesel to determine their emissions reduction potential. The oxygenated additives evaluated were dimethoxy methane (DMM) (also known as methylal) and diethyl ether (DEE). Blends of 5, 10, 20 and 30% by volume were investigated. The test engine was a 1993 Cummins B5.9 diesel, and data was collected for steady state operation at nine engine speed-load conditions. Experimental results show that all of the test fuels reduce PM when data is averaged across the nine engine operating modes. The largest reductions in PM were observed with a blend of 30% DMM in diesel, which yielded a 35% reduction compared to the baseline diesel fuel. Lower DMM blend levels also resulted in PM reductions, but to a lesser extent. On a modal averaged basis, F-T diesel reduced PM emissions by 29%, and DEE in concentrations of 10 to 30% reduced PM emissions by between 13 and 24%.
Technical Paper

Emissions from a Cummins B5.9 Diesel Engine Fueled with Oxygenate-in-Diesel Blends

2001-08-20
2001-01-2505
Engine fuel tests were conducted with an oxygenated fuel called Cetaner blended with conventional diesel fuel to determine its emissions reduction potential. Blends of 10, 20, 30 and 40% by volume were investigated. The test engine was a 1993 Cummins B5.9 diesel rated at 175 hp. Emissions of particulate matter (PM), oxides of nitrogen (NOx), hydrocarbons (HC) and carbon monoxide (CO), along with brake specific fuel consumption (bsfc) were measured during steady state operation at eight engine speed-load conditions. Soluble organic fraction (SOF) analysis was also carried out on the collected PM filter samples. The experimental results showed that the Cetaner blends can substantially reduce PM emissions. Reductions were observed in both the organic and inorganic fractions of the collected PM. On a modal-averaged basis, increasing Cetaner blend levels yielded greater PM reductions, with reductions of about 3-4% observed for each 1% of oxygen blended to the fuel by mass.
X