Refine Your Search

Topic

Author

Search Results

Technical Paper

A Computer Cooling System Study of a Diesel Powered Truck for Control of Transient Coolant, Oil and Cab Temperatures

1982-02-01
821049
A Vehicle-Engine-Cooling (VEC) system computer simulation model was used to study the transient performance of control devices and their temperature settings on oil, coolant and cab temperatures. The truck used in the study was an International Harvester COF-9670 cab over chassis heavy-duty vehicle equipped with a standard cab heater, a Cummins NTC-350 diesel engine with a McCord radiator and standard cooling system components and aftercooler. Input data from several portions of a Columbus to Bloomington, Indiana route were used from the Vehicle Mission Simulation (VMS) program to determine engine and vehicle operating conditions for the VEC system computer simulation model. The control devices investigated were the standard thermostat, the Kysor fan-clutch and shutter system. The effect of shutterstat location on shutter performance along with thermostat, shutter and fan activation temperature settings were investigated for ambient temperatures of 32, 85 and 100°F.
Technical Paper

A Modeling Study of the Exhaust Flow Rate and Temperature Effects on the Particulate Matter Thermal Oxidation Occurring during the Active Regeneration of a Diesel Particulate Filter

2015-04-14
2015-01-1044
Numerical models of aftertreatment devices are increasingly becoming indispensable tools in the development of aftertreatment systems that enable modern diesel engines to comply with exhaust emissions regulations while minimizing the cost and development time involved. Such a numerical model was developed at Michigan Technological University (MTU) [1] and demonstrated to be able to simulate the experimental data [2] in predicting the characteristic pressure drop and PM mass retained during passive oxidation [3] and active regeneration [4] of a catalyzed diesel particulate filter (CPF) on a Cummins ISL engine. One of the critical aspects of a calibrated numerical model is its usability - in other words, how useful is the model in predicting the pressure drop and the PM mass retained in another particulate filter on a different engine without the need for extensive recalibration.
Technical Paper

Advances in Quantitative Analytical Ferrography and the Evaluation of a High Gradient Magnetic Separator for the Study of Diesel Engine Wear

1982-02-01
821194
Several sources of variation in quantitative analytical ferrography are investigated. A standard ferrography analysis procedure is developed. Normalization of ferrographic data to account for the amount of oil used to make the ferrograms is discussed. Procedures to minimize the errors involved with calculating three quantitative ferrography parameters: the area covered by the large particles, AL (%/ml of oil), the area covered by the small particles, AS (%/ml of oil) and Area Under the Curve, AUC, (%-mm/ml of oil) are outlined. Ferrographic data are presented which show that the volume and dilution ratio of the oil sample being analyzed have a major effect on the accuracy of the analysis. Several variables which influence the area covered readings of the particle deposit on a ferrogram are discussed. The accuracy of quantitative analytical ferrography is assessed.
Technical Paper

Air-to-Fuel Ratio Calculation Methods for Oxygenated Fuels in Two-Stroke Engines

2015-04-14
2015-01-0965
In 1990, Roy Douglas developed an analytical method to calculate the global air-to-fuel ratio of a two-stroke engine from exhaust gas emissions. While this method has considerable application to two-stroke engines, it does not permit the calculation of air-to-fuel ratios for oxygenated fuels. This study proposed modifications to the Roy Douglas method such that it can be applied to oxygenated fuels. The ISO #16183 standard, the modified Spindt method, and the Brettschneider method were used to evaluate the modifications to the Roy Douglas method. In addition, a trapped air-to-fuel ratio, appropriate for two-stroke engines, was also modified to incorporate oxygenated fuels. To validate the modified calculation method, tests were performed using a two-stroke carbureted and two-stroke direct injected marine outboard engine over a five-mode marine test cycle running indolene and low level blends of ethanol and iso-butanol fuels.
Technical Paper

An In Situ Determination of the Thermal Properties of Gombustion-Chamber Deposits

1982-02-01
820071
A technique for making a radiometric measurement of the deposit surface temperature in a methane-fired engine was developed. The wavelength region between 3.5 and 4.1 μm was investigated. It was determined that while the combustion gases were relatively transparent, the surface temperature measurements would contain some gas radiation. A method of averaging the measurements of many cycles and correcting these data for the gas radiation was developed. Time-averaged surface temperature was used in a steady-state heat transfer analysis to determine deposit thermal conductivity. Deposit thermal diffusivity was determined from a transient experiment in which the engine’s ignition system was turned off and the cooling response of the deposit and wall were measured.
Technical Paper

Characterization of Oxidation Behaviors and Chemical-Kinetics Parameters of Diesel Particulates Relevant to DPF Regeneration

2010-10-25
2010-01-2166
At the current stage of engine technology, diesel engines typically require diesel particulate filter (DPF) systems to meet recent particulate emissions standards. To assure the performance and reliability of DPF systems, profound understanding of filtration and regeneration mechanisms is required. Among extensive efforts for developing advanced DPF systems, the development of effective thermal management strategies, which control the thermal runaway taking place in oxidation of an excess amount of soot deposit in DPF, is quite challenging. This difficulty stems mainly from lack of sufficient knowledge and understanding about DPF regeneration mechanisms, which need detailed information about oxidation of diesel particulate matter (PM). Therefore, this work carried out a series of oxidation experiments of diesel particulates collected from a DPF on a diesel engine, and evaluated the oxidation rates of the samples using a thermo-gravimetric analyzer (TGA).
Technical Paper

Characterizing Spray Behavior of Diesel Injection Systems Using X-Ray Radiography

2009-04-20
2009-01-0846
In Diesel engines, fuel injection plays a critical role in performance, efficiency, and emissions. Altering parameters such as injection quantity, duration, pressure, etc. influences the injector's performance. Changes in the injection system architecture can also affect the spray behavior. Understanding of the flow near the nozzle exit can lead to the establishment of correlation to spray characteristics further downstream, and eventually its combustion behavior in the engine. Because of its high density, the near-nozzle region of the spray is difficult to study using optical techniques. This near-nozzle region of spray from high pressure injectors was studied using the quantitative and time-resolved x-ray radiography technique. This method provides high spatial and temporal resolution without significant scattering effects.
Technical Paper

Combustion Robustness Characterization of Gasoline and E85 for Startability in a Direct Injection Spark-Ignition Engine

2012-04-16
2012-01-1073
An experimental study and analysis was conducted to investigate cold start robustness of an ethanol flex-fuel spark ignition (SI) direct injection (DI) engine. Cold starting with ethanol fuel blends is a known challenge due to the fuel characteristics. The program was performed to investigate strategies to reduce the enrichment requirements for the first firing cycle during a cold start. In this study a single-cylinder SIDI research engine was used to investigate gasoline and E85 fuels which were tested with three piston configurations (CR11F, CR11B, CR15.5B - which includes changes in compression ratio and piston geometry), at three intake cam positions (95, 110, 125 °aTDC), and two fuel pressures (low: 0.4 MPa and high: 3.0 MPa) at 25°C±1°C engine and air temperature, for the first cycle of an engine start.
Technical Paper

Correlated Simulation of Pseudo Transient Torque Converter Clutch Engagement Using Coupled Fluid Structure Interaction

2023-04-11
2023-01-0457
This investigation utilizes a correlated fluid-structure interaction (FSI) model of the torque converter and clutch assembly to perform a pseudo transient clutch engagement at steady state operating conditions. The pseudo transient condition consists of a series of nine steady state simulations that transition the torque converter clutch from fully released to near full lockup at a constant input torque and output speed representative of a highway cruising speed. The flow and pressured field of the torque converter torus and clutch are solved using a CFD model and then passed along to a transient structural model to determine the torque capacity of the lockup clutch. Bulk property assumptions regarding the friction material, deformation of the clutch plate, and deflection of supporting structures were made to simplify the model setup, run time, and solution convergence.
Technical Paper

Detailed Characterization of Morphology and Dimensions of Diesel Particulates via Thermophoretic Sampling

2001-09-24
2001-01-3572
A thermophoretic particulate sampling device was used to investigate the detailed morphology and microstructure of diesel particulates at various engine-operating conditions. A 75 HP Caterpillar single-cylinder direct-injection diesel engine was operated to sample particulate matter from the high-temperature exhaust stream. The morphology and microstructure of the collected diesel particulates were analyzed using a high-resolution transmission electron microscope and subsequent image processing/data acquisition system. The analysis revealed that spherical primary particles were agglomerated together to form large aggregate clusters for most of engine speed and load conditions. Measured primary particle sizes ranged from 34.4 to 28.5 nm at various engine-operating conditions. The smaller primary particles observed at high engine-operating conditions were believed to be caused by particle oxidation at the high combustion temperature.
Technical Paper

Development and Evaluation of a Diesel Powered Truck Cooling System Computer Simulation Program

1982-02-01
821048
A computer simulation program was developed to simulate the thermal responses of an on-highway, heavy duty diesel powered truck in transient operation for evaluation of cooling system performance. Mathematical models of the engine, heat exchangers, lubricating oil system, thermal control sensors (thermostat and shutterstat), auxiliary components, and the cab were formulated and calibrated to laboratory experimental data. The component models were assembled into the vehicle engine cooling system model and used to predict air-to-boil temperatures. The model has the capability to predict real time coolant, oil and cab temperatures using vehicle simulation input data over various routes.
Technical Paper

Development and Validation of a Primary Breakup Model for Diesel Engine Applications

2009-04-20
2009-01-0838
Fuel injection characteristics, in particular the atomization and penetration of the fuel droplets in the region close to the nozzle orifice, are known to affect emission and particulate formation in Diesel engines. It is also well established that the primary fuel atomization process is induced by aerodynamics in the near nozzle region as well as cavitation and turbulence from the injector nozzle. Typical breakup models in the literature however, do not consider the effects of cavitation and turbulence from nozzle injector. In this paper, a comprehensive primary breakup model incorporating the inner nozzle flow effects such as cavitation and turbulence along with aerodynamically induced breakup is developed and incorporated in the CONVERGE CFD code. This new primary breakup model is tested in a constant volume spray chamber against various spray data available in the literature.
Technical Paper

Development of an Improved Residuals Estimation Model for Dual Independent Cam Phasing Spark-Ignition Engines

2013-04-08
2013-01-0312
Estimating internal residual during engine operation is essential to robust control during startup, steady state, and transient operation. Internal residual has a significant effect on combustion flame propagation, combustion stability and emissions. Accurate residual estimate also provides a better foundation for optimizing open loop fuel control during startup, while providing a basis for reducing emissions during closed loop control. In this paper we develop an improved model to estimate residual gas fraction by means of isolation and characterization of the physical processes in the gas exchange. Examining existing residuals model as the base, we address their deficiencies making changes to appropriate terms to the model. Existing models do not work well under wide angle dual independent cam phasing. The improved residual estimation model is not limited by the initial data set used for its calibration and does not need cylinder pressure data.
Journal Article

Driving Pattern Recognition for Adaptive Hybrid Vehicle Control

2012-04-16
2012-01-0742
The vehicle driving cycles affect the performance of a hybrid vehicle control strategy, as a result, the overall performance of the vehicle, such as fuel consumption and emission. By identifying the driving cycles of a vehicle, the control system is able to dynamically change the control strategy (or parameters) to the best one to adapt to the changes of vehicle driving patterns. This paper studies the supervised driving cycle recognition using pattern recognition approach. With pattern recognition method, a driving cycle is represented by feature vectors that are formed by a set of parameters to which the driving cycle is sensitive. The on-line driving pattern recognition is achieved by calculating the feature vectors and classifying these feature vectors to one of the driving patterns in the reference database. To establish reference driving cycle database, the representative feature vectors for four federal driving cycles are generated using feature extraction method.
Technical Paper

Effects of Ethanol Additives on Diesel Particulate and NOx Emissions

2001-05-07
2001-01-1937
Particulate and nitrogen oxide emissions from a 1.9-liter Volkswagen diesel engine were measured for three different fuels: neat diesel fuel, a blend of diesel fuel with 10% ethanol, and a blend of diesel fuel with 15% ethanol. Engine-out emissions were measured on an engine dynamometer for five different speeds and five different torques using the standard engine-control unit. Results show that particulate emissions can be significantly reduced over approximately two-thirds of the engine map by using a diesel-ethanol blend. Nitrogen oxide emissions can also be significantly reduced over a smaller portion of the engine map by using a diesel-ethanol blend. Moreover, there is an overlap between the regions where particulate emissions can be reduced by up to 75% and nitrogen oxide emissions are reduced by up to 84% compared with neat diesel fuel.
Technical Paper

Effects of Nanofluid Coolant in a Class 8 Truck Engine

2007-11-01
2007-01-2141
The cooling system of a Class 8 truck engine was modeled using the Flowmaster computer code. Numerical simulations were performed replacing the standard coolant, 50/50 mixture of ethylene-glycol and water, with nanofluids comprised of CuO nanoparticles suspended in a base fluid of a 50/50 mixture of ethylene-glycol and water. By using engine and cooling system parameters from the standard coolant case, the higher heat transfer coefficients of the nanofluids resulted in lower engine and coolant temperatures. These temperature reductions introduced flexibility in system parameters - three of which were investigated for performance improvement: engine power, coolant pump speed and power, and radiator air-side area.
Technical Paper

Efficiency and Emissions Mapping of a Light Duty Diesel - Natural Gas Engine Operating in Conventional Diesel and RCCI Modes

2016-10-17
2016-01-2309
Reactivity Controlled Compression Ignition (RCCI) is a promising dual-fuel Low Temperature Combustion (LTC) mode with significant potential for reducing NOx and particulate emissions while improving or maintaining thermal efficiency compared to Conventional Diesel Combustion (CDC) engines. The large reactivity difference between diesel and Natural Gas (NG) fuels provides a strong control variable for phasing and shaping combustion heat release. In this work, the Brake Thermal Efficiencies (BTE), emissions and combustion characteristics of a light duty 1.9L, four-cylinder diesel engine operating in single fuel diesel mode and in Diesel-NG RCCI mode are investigated and compared. The engine was operated at speeds of 1300 to 2500 RPM and loads of 1 to 7 bar BMEP. Operation was limited to 10 bar/deg Maximum Pressure Rise Rate (MPRR) and 6% Coefficient of Variation (COV) of IMEP.
Journal Article

Efficient, Active Radiator-Cooling System

2013-05-15
2013-01-9017
A new concept for an efficient radiator-cooling system is presented for reducing the size or increasing the cooling capacity of vehicle coolant radiators. Under certain conditions, the system employs active evaporative cooling in addition to conventional finned air cooling. In this regard, it is a hybrid radiator-cooling system comprised of the combination of conventional air-side finned surface cooling and active evaporative water cooling. The air-side finned surface is sized to transfer required heat under all driving conditions except for the most severe. In the later case, evaporative cooling is used in addition to the conventional air-side finned surface cooling. Together the two systems transfer the required heat under all driving conditions. However, under most driving conditions, only the air-side finned surface cooling is required. Consequently, the finned surface may be smaller than in conventional radiators that utilize air-side finned surface cooling exclusively.
Technical Paper

Engine-Based Image Acquisition for Piloted Diesel Fuel Spray Analysis

1994-03-01
940679
An optically-accessible research engine, image acquisition, and a control system are designed to acquire two-dimensional images of a pilot and main Diesel fuel sprays. This paper presents the engine-based apparatus, image acquisition techniques, and preliminary results of analysis performed upon interacting Diesel fuel sprays. The engine is a single-cylinder compression-ignition two-stroke with optically-accessible head mounted on a high speed CFR engine crankcase. It is equipped with a special dual-injection system for production of in-cylinder interacting sprays (main and pilot) with a high degree of adjustability with regard to the sprays fuel quantities and injection timings. The engine construction permits illumination of the sprays by a thin sheet of laser light from a pulsed Nd:YAG laser frequency doubled to operate at the visible wavelength of 532 nm.
Technical Paper

Experimental and Numerical Study of Water Spray Injection at Engine-Relevant Conditions

2013-04-08
2013-01-0250
Water spray characterization of a multi-hole injector under pressures and temperatures representative of engine-relevant conditions was investigated for naturally aspirated and boosted engine conditions. Experiments were conducted in an optically accessible pressure vessel using a high-speed Schlieren imaging to visualize the transient water spray. The experimental conditions included a range of injection pressures of 34, 68, and 102 bar and ambient temperatures of 30 - 200°C, which includes flash-boiling and non-flash-boiling conditions. Transient spray tip penetration and spray angle were characterized via image processing of raw Schlieren images using Matlab code. The CONVERGE CFD software was used to simulate the water spray obtained experimentally in the vessel. CFD parameters were tuned and validated against the experimental results of spray profile and spray tip penetration measured in the combustion vessel (CV).
X