Refine Your Search

Topic

Search Results

Technical Paper

A Novel Unidirectional Switched Reluctance Machine

1993-04-01
931390
A novel, two-phase, switched reluctance machine concept is presented. Pole side shaping assures that the machine can develop motoring torque from any static position. Pole face shaping is introduced to control the nature of flux linkages as a function of position, allowing reduction in position-dependent torque ripple over conventional switched reluctance machines. Since the machine has 50% of the magnetic circuit active at any point in time, whereas the three-phase switched reluctance machine has 33% of the magnetic circuit instantaneously active, the new design shows increased power density over the common three-phase machine.
Technical Paper

A Review of Current Techniques for Measuring Muffler Transmission Loss

2003-05-05
2003-01-1653
The most common approach for measuring the transmission loss of a muffler is to determine the incident power by decomposition theory and the transmitted power by the plane wave approximation assuming an anechoic termination. Unfortunately, it is difficult to construct a fully anechoic termination. Thus, two alternative measurement approaches are considered, which do not require an anechoic termination: the two load method and the two-source method. Both methods are demonstrated on two muffler types: (1) a simple expansion chamber and (2) a double expansion chamber with an internal connecting tube. For both cases, the measured transmission losses were compared to those obtained from the boundary element method. The measured transmission losses compared well for both cases demonstrating that transmission losses can be determined reliably without an anechoic termination. It should be noted that the two-load method is the easier to employ for measuring transmission loss.
Technical Paper

Accurate Measurement of Small Absorption Coefficients

2007-05-15
2007-01-2224
In this paper procedures for estimating the sound absorption coefficient when the specimen has inherently low absorption are discussed. Examples of this include the measurement of the absorption coefficient of pavements, closed cell foams and other barrier materials whose absorption coefficient is nevertheless required, and the measurement of sound absorption of muffler components such as perforates. The focus of the paper is on (1) obtaining an accurate phase correction and (2) proper correction for tube attenuation when using impedance tube methods. For the latter it is shown that the equations for tube attenuation correction in the standards underestimate the actual tube attenuation, leading to an overestimate of the measured absorption coefficient. This error could be critical, for example, when one is attempting to qualify a facility for the measurement of pass-by noise.
Technical Paper

Analyzing Inventory/Transportation Cost Tradeoffs for Milkrun Parts Delivery Systems to Large JIT Assembly Plants

2001-09-10
2001-01-2600
As one considers the interrelationship between supplier logistics and performance of JIT assembly plants, the question arises concerning how many hours of parts inventory are appropriate. Low inventories reduce holding costs, throughput times, and (by eliminating storage) material handling costs internal to the plant. Moreover, under the lean philosophy, low inventories enable improved control over part quality and supplier performance and they maintain a healthy stress on the system necessary to motivate improvements. The dollar magnitude of these later savings is intangible but generally considered significant. On the other hand, low inventories also increase the frequency of milkrun routes and the number of suppliers on these routes, hence, increasing transportation costs.
Journal Article

Anisotropic Dynamic Mechanical Properties of 3D Printed Carbon-Fiber Composites

2022-03-29
2022-01-0335
3D printing is a revolutionary manufacturing method that allows the productions of engineering parts almost directly from modeling software on a computer. With 3D printing technology, future manufacturing could become vastly efficient. However, it has been reported that the 3D printed parts exhibit anisotropic behaviors in microstructure and mechanical properties, that is, depending on the positions (infill orientations) that the parts are placed on a printer platform, the properties of resultant parts can vary greatly. So far, studies on anisotropic behaviors of 3D printed parts have been mostly limited to the static properties (modulus of elasticity, failure strength, etc.); there is a lack on the understanding of mechanical responses of 3D printed parts under dynamic conditions. In the present study, the anisotropic behaviors of 3D printed parts are investigated from the dynamic aspect.
Technical Paper

Anisotropic Material Behavior and Design Optimization of 3D Printed Structures

2020-04-14
2020-01-0228
Traditional manufacturing processes such as injection or compression molding are often enclosed and pressurized systems that produce homogenous products. In contrast, 3D printing is exposed to the environment at ambient (or reduced) temperature and atmospheric pressure. Furthermore, the printing process itself is mostly “layered manufacturing”, i.e., it forms a three-dimensional part by laying down successive layers of materials. Those characteristics inevitably lead to an inconsistent microstructure of 3D printed products and thus cause anisotropic mechanical properties. In this paper, the anisotropic behaviors of 3D printed parts were investigated by using both laboratory coupon specimens (bending specimens) and complex engineering structures (A-pillar). Results show that the orientation of the infills of 3D printed parts can significantly influence their mechanical properties.
Technical Paper

Anisotropic Material Behavior of 3D Printed Fiber Composites

2024-04-09
2024-01-2573
Literature has shown that 3D printed composites may have highly anisotropic mechanical properties due to variation in microstructure as a result of filament deposition process. Laminate composite theory, which is already used for composite products, has been proposed as an effective method for quantifying these mechanical characteristics. Continuous fiber composites traditionally have the best mechanical properties but can difficult or costly to manufacture, especially when attempting to use additive manufacturing methods. Traditionally, continuous fiber composites used specialized equipment such as vacuum enclaves or labor heavy hand layering techniques. An attractive alternative to these costly techniques is modifying discontinuous fiber additive manufacturing methods into utilizing continuous fibers. Currently there exist commercial systems that utilize finite-deposition (FD) techniques that insert a continuous fiber braid into certain layers of the composite product.
Technical Paper

Application of Micro-Perforated Panels to Attenuate Noise in a Duct

2007-05-15
2007-01-2196
The sound attenuation performance of microperforated panels (MPP) with adjoining air cavity is demonstrated. First of all, simulated results are shown based upon Maa's work investigating the parameters which impact MPP performance [1]. It is shown that the most important parameter is the depth of the adjoining cavity. Following this, an experimental study was undertaken to compare the performance of an MPP to that of standard foam. Following this, two strategies to improve the MPP performance are implemented. These include partitioning the air cavity and having a cavity with varying depth. Both strategies show a marked improvement in MPP attenuation.
Technical Paper

Biologically Inspired, Intelligent Muscle Material for Sensing and Responsive Delivery of Countermeasures

2000-07-10
2000-01-2514
The design and development of new biologically inspired technologies based on intelligent materials that are capable of sensing the levels of target biomolecules and, if needed, trigger appropriate countermeasures to regulate biological processes and rhythms of the astronauts is being undertaken in our laboratories. This is accomplished by coupling biologically inspired sensors that monitor the levels of the target biomolecules with intelligent polymeric materials that can regulate the release of a countermeasure. The technology developed here integrates sensors and artificial muscle material into a self-regulating device that can perform with minimal crew intervention. Further, it takes advantage of microfabrication technology to construct lightweight and robust responsive delivery systems. These “intelligent” devices address the need for the control and regulation of biological processes and rhythms under spaceflight conditions.
Technical Paper

Biosensing on the CD Microfluidic Platform with Genetically Engineered Proteins

2000-07-10
2000-01-2513
The current Si/polymeric medical diagnostic sensors that are on the market only feature a one-point calibration system [1]. Such a measurement results in less accurate sensing and more in-factory sensor rejection. The two-point calibration fluidic method introduced here will alleviate some of the shortcomings of such current miniature analytical systems. Our fluidic platform is a disposable, multi-purpose micro analytical laboratory on a compact disc (CD) [2, 3]. This system is based on the centrifugal force, in which fluidic flow can be controlled by the spinning rate of the CD and thus a whole range of fluidic functions including valving, mixing, metering, splitting, and separation can be implemented. Furthermore, optical detection such as absorption and fluorescence can be incorporated into the CD control unit to obtain signals from pre-specified positions on the disc.
Technical Paper

Blocked Force Determination on Thin Plate Structures Including Applications

2019-06-05
2019-01-1525
Transfer path analysis is commonly used to determine input forces indirectly utilizing measured responses and transfer functions. Though it is recommended that the source should be detached from the vibrating structure when measuring transfer functions, engineers and technicians frequently have a difficult time in doing so in practice. Recently, a substitute for inverse force determination via transfer path analysis has been suggested. The indirectly determined forces are termed blocked forces and are usable so long as the source and machine are not detached from one another. Blocked forces have the added advantage of being valid even if the machine structure is modified. In this research, a typical automotive engine cover is considered as a receiver structure and is bolted to a plastic source plate excited by an electromagnetic shaker.
Technical Paper

Characterize the High-Frequency Dynamic Properties of Elastomers Using Fractional Calculus for FEM

2007-05-15
2007-01-2417
Finite element modeling has been used extensively nowadays for predicting the noise and vibration performance of whole engines or subsystems. However, the elastomeric components on the engines or subsystems are often omitted in the FE models due to some known difficulties. One of these is the lack of the material properties at higher frequencies. The elastomer is known to have frequency-dependent viscoelasticity, i.e., the dynamic modulus increases monotonically with frequency and the damping exhibits a peak. These properties can be easily measured using conventional dynamic mechanical experiments but only in the lower range of frequencies. The present paper describes a method for characterizing the viscoelastic properties at higher frequencies using fractional calculus. The viscoelastic constitutive equations based on fractional derivatives are discussed. The method is then used to predict the high frequency properties of an elastomer.
Technical Paper

Diamond Thin Film Exposure to Simulated Thermionic Reactor Environments

1992-08-03
929303
The high temperature and high neutron flux environment of a thermionic space power reactor presents a challenge in the design of the sheath insulator within a thermionic fuel element. The present alumina insulator design is suspect to degradation due to the neutron flux. The alumina insulator also requires a barrier coating to isolate it from the liquid alkali metal coolant. Although the alumina sheath development is progressing, the alumina insulator remains a potential point of significant performance loss in the thermionic fuel element. The recent successes in depositing polycrystalline diamond film onto cylindrical refractory metal substrates has led to the consideration of diamond as a potentially ideal sheath insulator. Investigations have been conducted into the durability of diamond thin film under exposure to simulated thermionic reactor conditions.
Journal Article

Effect of Contamination on Acoustic Performance of Microperforated Panels

2011-05-17
2011-01-1627
Microperforated panel (MPP) absorbers are rugged, non-combustible, and do not deteriorate over time. That being the case, they are especially suitable for long term use in harsh environments. However, the acoustic performance is modified when contaminated by dust, dirt, or fluids (i.e. oil, water). This paper examines that effect experimentally and correlates the absorption performance with Maa's theory for micro-perforated panels. Transfer impedance and absorption coefficient are measured for different levels of aluminum oxide and carbon dust accumulation. The amount of dust contamination is quantified by measuring the luminance difference between clean and dirty panels with a light meter. The porosity and hole diameter in Maa's equation are modified to account for dust obstruction. The effect of coating the MPP with oil, water, and other appropriate viscous fluids was also measured. This effect was simulated by modifying the viscous factor in Maa's equation.
Journal Article

Effect of Fiber Content on Anisotropic Behavior of 3D Printed Fiber Composites

2023-04-11
2023-01-0071
Discontinuous or short-fiber composites are traditionally less expensive and are normally less difficult to manufacture than continuous fiber composites, while still retaining some of the benefits of reinforcing fibers. Similarly to continuous fibers, the volume ratio influences the mechanical properties of the composite. In addition the ratio of the length and diameter of the reinforcing fibers also plays a significant role. This ratio (also known as the aspect ratio) adds another variable to the anisotropic properties of lamina plies where now not only the content of fibers but also the dimensions of the fibers themselves play a role. Short fiber reinforced composites are already used in additive manufacturing techniques; however, the amount of carbon fiber and the length of the discontinuous strands in the filaments are normally not stated or vary greatly.
Technical Paper

Effects of Seal Viscoelastic Properties on Engine Exterior Cover Noise and Vibration

2007-05-15
2007-01-2285
Engine exterior cover seals are typically made of elastomeric materials and used to seal the interfaces. The design of engine/transmission seals has been traditionally considered from the sealibility aspects. Recently, there have been additional demands that these seals be designed to reduce the vibration transmitted from engine/transmission and to attenuate the radiated noise. To accomplish this goal, the frequency-dependent viscoelastic properties of the seals will have to be considered. This article examines the frequency-dependent viscoelastic properties of some common elastomeric seals. The impacts of these materials on an engine valve cover noise and vibration are particularly investigated. Some design strategies are also discussed to optimize the viscoelastic effects of the elastomeric seals.
Journal Article

Evaluations of Mechanical Properties of ABS Parts from Open-Source 3D Printers and Conventional Manufacturing

2020-04-14
2020-01-0229
3D printing is a revolutionary manufacturing method that allows the productions of engineering parts almost directly from modeling software on a computer. With 3D printing technology, future manufacturing could become vastly efficient. However, the procedures used in 3D printing differ substantially among the printers and from those used in conventional manufacturing. The objective of the present work was to comprehensively evaluate the mechanical properties of engineering products fabricated by 3D printing and conventional manufacturing. Three open-source 3D printers, i.e., the Flash Forge Dreamer, the Tevo Tornado, and the Prusa, were used to fabricate the identical parts out of the same material (acrylonitrile butadiene styrene). The parts were printed at various positions on the printer platforms and then tested in bending. Results indicate that there exist substantial differences in mechanical responses among the parts by different 3D printers.
Journal Article

Finite Element Analysis of Piezoelectric Composite Actuators

2011-04-12
2011-01-0218
Piezoelectric materials are smart materials that can undergo mechanical deformation when electrically or thermally activated. An electric voltage is generated on the surfaces when a piezoelectric material is subjected to a mechanical stress. This is referred to as the ‘direct effect’ and finds application as sensors. The external geometric form of this material changes when it is subjected to an applied voltage, known as ‘converse effect’ and has been employed in the actuator technology. Such piezoelectric actuators generate enormous forces and make highly precise movements that are extremely rapid, usually in the micrometer range. The current work is focused towards the realization and hence application of the actuator technology based on piezoelectric actuation. Finite element simulations are performed on different types of piezoelectric actuations to understand the working principle of various actuators.
Technical Paper

Measuring Bulk Properties of Sound-Absorbing Materials Using the Two-Source Method

2003-05-05
2003-01-1586
The two-source method was used to measure the bulk properties (complex characteristic impedance and complex wavenumber) of sound-absorbing materials, and results were compared to those obtained with the more commonly used two-cavity method. The results indicated that the two-source method is superior to the two-cavity method for materials having low absorption. Several applications using bulk properties are then presented. These include: (1) predicting the absorptive properties of an arbitrary thickness absorbing material or (2) layered material and (3) using bulk properties for a multi-domain boundary element analysis.
Technical Paper

Numerical Simulation of a Coating Sprayer Capable of Producing Controllable Paint Droplets

2015-04-14
2015-01-0737
Lack of a precise control over paint droplets released from current coating sprayers has motivated this study to develop an atomizer capable of generating a uniform flow of mono-dispersed droplets. In the current study, a numerical investigation based on CFD incorporating volume of fluid (VOF) multiphase model has been developed to capture the interface between air and paint phases for a typical atomizer equipped with piezoelectric actuator. Effects of inlet flow rate and actuator frequency on ejected droplets' characteristics, droplet diameter and their successive spacing are studied in detail. It will be shown that for a determined flow rate of paint, there is an optimum actuator frequency in which droplet size is minimum. Besides, there exists a direct relationship between the inlet paint velocity and obtained optimal actuator frequency.
X