Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

5G Network Connectivity Automated Test and Verification for Autonomous Vehicles Using UAVs

2022-03-29
2022-01-0145
The significance and the number of vehicle safety features enabled via connectivity continue to increase. OnStar, with its automatic airbag notification, was one of the first vehicle safety features that demonstrate the enhanced safety benefits of connectivity. Vehicle connectivity benefits have grown to include remote software updates, data analytics to aid with preventative maintenance and even to theft prevention and recovery. All of these services require available and reliable connectivity. However, except for the airbag notification, none have strict latency requirements. For example, software updates can generally be postponed till reliable connectivity is available. Data required for prognostic use cases can be stored and transmitted at a later time. A new set of use cases are emerging that do demand continuous, reliable and low latency connectivity. For example, remote control of autonomous vehicles may be required in unique situations.
Technical Paper

A Braking Efficiency Test Technique

1975-02-01
750398
This paper provides a method whereby vehicle stopping performance can be specified, measured, and compared independently of the test surface. The method provides for an independent measure of the prevailing friction potential of the test surface which is used to normalize the measured stopping performance of the test vehicle. The concept presented is tailored toward a safety argument and toward rulemaking as a potential adaptation to braking effectiveness requirements which currently exist. A new mobile tire dynamometer, developed for this program, is discussed, as are the results of a demonstration test program.
Technical Paper

A Comparative Study of Two RVE Modelling Methods for Chopped Carbon Fiber SMC

2017-03-28
2017-01-0224
To advance vehicle lightweighting, chopped carbon fiber sheet molding compound (SMC) is identified as a promising material to replace metals. However, there are no effective tools and methods to predict the mechanical property of the chopped carbon fiber SMC due to the high complexity in microstructure features and the anisotropic properties. In this paper, a Representative Volume Element (RVE) approach is used to model the SMC microstructure. Two modeling methods, the Voronoi diagram-based method and the chip packing method, are developed to populate the RVE. The elastic moduli of the RVE are calculated and the two methods are compared with experimental tensile test conduct using Digital Image Correlation (DIC). Furthermore, the advantages and shortcomings of these two methods are discussed in terms of the required input information and the convenience of use in the integrated processing-microstructure-property analysis.
Technical Paper

A Comparative Study on Sound Transmission Loss and Absorption Coefficient of Acoustical Materials

2011-05-17
2011-01-1625
Acoustical materials are widely used in automotive vehicles and other industrial applications. Two important parameters namely Sound Transmission Loss (STL) and absorption coefficient are commonly used to evaluate the acoustical performance of these materials. Other parameters, such as insertion loss, noise reduction, and loss factors are also used to judge their performance depending on the application of these materials. A systematic comparative study of STL and absorption coefficient was conducted on various porous acoustical materials. Several dozen materials including needled cotton fiber (shoddy) and foam materials with or without barrier/scrim were investigated. The results of STL and absorption coefficient are presented and compared. As expected, it was found that most of materials are either good in STL or good in absorption. However, some combinations can achieve a balance of performance in both categories.
Technical Paper

A Comparison of a Semi-Active Inerter and a Semi-Active Suspension

2010-10-05
2010-01-1903
Inerters have become a hot topic in recent years, especially in vehicle, train, and building suspension systems. The performance of a passive inerter and a semi-active inerter was analyzed and compared with each other and it showed that the semi-active inerter has much better performance than the passive inerter, especially with the Hybrid control method. Eight different layouts of suspensions were analyzed with a quarter car model in this paper. The adaptation of dimensionless parameters was considered for a semi-active suspension and the semi-active inerters. The performance of the semi-active inerter suspensions with different layouts was compared with a semi-active suspension with a conventional parallel spring-damper arrangement. It shows a semi-active suspension, with more simple configuration and lower cost, has similar or better compromise between ride and handling than a semi-active inerter with the Hybrid control.
Journal Article

A Copula-Based Approach for Model Bias Characterization

2014-04-01
2014-01-0735
Available methodologies for model bias identification are mainly regression-based approaches, such as Gaussian process, Bayesian inference-based models and so on. Accuracy and efficiency of these methodologies may degrade for characterizing the model bias when more system inputs are considered in the prediction model due to the curse of dimensionality for regression-based approaches. This paper proposes a copula-based approach for model bias identification without suffering the curse of dimensionality. The main idea is to build general statistical relationships between the model bias and the model prediction including all system inputs using copulas so that possible model bias distributions can be effectively identified at any new design configurations of the system. Two engineering case studies whose dimensionalities range from medium to high will be employed to demonstrate the effectiveness of the copula-based approach.
Technical Paper

A Data-Driven Framework of Crash Scenario Typology Development for Child Vulnerable Road Users in the U.S.

2023-04-11
2023-01-0787
Motor vehicle crashes involving child Vulnerable Road Users (VRUs) remain a critical public health concern in the United States. While previous studies successfully utilized the crash scenario typology to examine traffic crashes, these studies focus on all types of motor vehicle crashes thus the method might not apply to VRU crashes. Therefore, to better understand the context and causes of child VRU crashes on the U.S. road, this paper proposes a multi-step framework to define crash scenario typology based on the Fatality Analysis Reporting System (FARS) and the Crash Report Sampling System (CRSS). A comprehensive examination of the data elements in FARS and CRSS was first conducted to determine elements that could facilitate crash scenario identification from a systematic perspective. A follow-up context description depicts the typical behavioral, environmental, and vehicular conditions associated with an identified crash scenario.
Journal Article

A Direct Yaw Control Algorithm for On- and Off-Road Yaw Stability

2011-04-12
2011-01-0183
Models for off-road vehicles, such as farm equipment and military vehicles, require an off-road tire model in order to properly understand their dynamic behavior on off-road driving surfaces. Extensive literature can be found for on-road tire modeling, but not much can be found for off-road tire modeling. This paper presents an off-road tire model that was developed for use in vehicle handling studies. An on-road, dry asphalt tire model was first developed by performing rolling road force and moment testing. Off-road testing was then performed on dirt and gravel driving surfaces to develop scaling factors that explain how the lateral force behavior of the tire will scale from an on-road to an off-road situation. The tire models were used in vehicle simulation software to simulate vehicle behavior on various driving surfaces. The simulated vehicle response was compared to actual maximum speed before sliding vs. turning radius data for the studied vehicle to assess the tire model.
Technical Paper

A Distributed Control System Framework for Automotive Powertrain Control with OSEK Standard and CAN Network

1999-03-01
1999-01-1276
This paper presents a distributed control system framework for next-generation automotive control systems, in which various control units are connected with CAN bus. The framework is a software platform that performs communication between control units and invocation of application programs. The framework includes necessary functions for data transmission to meet end-to-end timing constraints in distributed control systems. Application programmers don't have to write any communication procedure but focus on developing application programs with appropriate API (Application Program Interface). The framework is based on driving force management and also OSEK, which is a standard real-time operating system (OSEK-OS) and a communication protocol (CAN) for automotive control. We are now applying our prototype framework to an adaptive cruise control system in our experimental vehicle.
Technical Paper

A Dual-Use Enterprise Context for Vehicle Design and Technology Valuation

2004-03-08
2004-01-1588
Developing a new technology requires decision-makers to understand the technology's implications on an organization's objectives, which depend on user needs targeted by the technology. If these needs are common between two organizations, collaboration could result in more efficient technology development. For hybrid truck design, both commercial manufacturers and the military have similar performance needs. As the new technology penetrates the truck market, the commercial enterprise must quantify how the hybrid's superior fuel efficiency will impact consumer purchasing and, thus, future enterprise profits. The Army is also interested in hybrid technology as it continues its transformation to a more fuel-efficient force. Despite having different objectives, maximizing profit and battlefield performance, respectively, the commercial enterprise and Army can take advantage of their mutual needs.
Journal Article

A Fatigue Life Prediction Method of Laser Assisted Self-Piercing Rivet Joint for Magnesium Alloys

2015-04-14
2015-01-0537
Due to magnesium alloy's poor weldability, other joining techniques such as laser assisted self-piercing rivet (LSPR) are used for joining magnesium alloys. This research investigates the fatigue performance of LSPR for magnesium alloys including AZ31 and AM60. Tensile-shear and coach peel specimens for AZ31 and AM60 were fabricated and tested for understanding joint fatigue performance. A structural stress - life (S-N) method was used to develop the fatigue parameters from load-life test results. In order to validate this approach, test results from multijoint specimens were compared with the predicted fatigue results of these specimens using the structural stress method. The fatigue results predicted using the structural stress method correlate well with the test results.
Technical Paper

A Framework for Optimization of the Traction Motor Design Based on the Series-HEV System Level Goals

2014-04-01
2014-01-1801
The fidelity of the hybrid electric vehicle simulation is increased with the integration of a computationally-efficient finite-element based electric machine model, in order to address optimization of component design for system level goals. In-wheel electric motors are considered because of the off-road military application which differs significantly from commercial HEV applications. Optimization framework is setup by coupling the vehicle simulation to the constrained optimization solver. Utilizing the increased design flexibility afforded by the model, the solver is able to reshape the electric machine's efficiency map to better match the vehicle operation points. As the result, the favorable design of the e-machine is selected to improve vehicle fuel economy and reduce cost, while satisfying performance constraints.
Technical Paper

A Frequency Analysis of Semiactive Control Methods for Vehicle Application

2004-05-04
2004-01-2098
The performance of five different skyhook control methods is studied experimentally, using a quarter-car rig. The control methods that are analyzed include: skyhook control, groundhook control, hybrid control, displacement skyhook, and relative displacement skyhook. Upon evaluating the performance of each method in frequency domain for various control conditions, they are compared with each other as well as with passive damping. The results indicate that no one control method outperforms other control methods at both the sprung and unsprung mass natural frequencies. Each method can perform better than the other control methods in some respect. Hybrid control, however, comes close to providing the best compromise between different dynamic demands on a primary suspension. The results indicate that hybrid control can offer benefits to both the sprung and unsprung mass with control gain settings that provide equal contributions from skyhook control and groundhook control.
Technical Paper

A Fuel Rate Based Catalyst Pass Fraction Model for Predicting Tailpipe NOx Emissions from a Composite Car

1999-03-01
1999-01-0455
Modeling tailpipe NOx emissions has always been difficult due to the complexity of the numerous factors involved in the catalytic conversion of the pollutant. Most emissions modeling has been based on steady state driving. A parameterized algebraic model for second-by-second tailpipe emissions of NOx for a composite Tier 1 car is presented employing data from the Federal Test Procedure Revision Project (FTPRP). Calculating fuel rate from measured engine out values, the catalytic converter is physically modeled based on the fuel rate history and a few fitted parameters. Under certain conditions, the changes in fuel rate are related to trends in the air to fuel ratio. The model accurately predicts the time dependence of hot stabilized tailpipe NOx emissions in the FTP bag 3 and US06 driving cycles. Modeling of low power driving, as in bag 2, is not as successful.
Technical Paper

A Global Model for Steady State and Transient S.I. Engine Heat Transfer Studies

1996-02-01
960073
A global, systems-level model which characterizes the thermal behavior of internal combustion engines is described in this paper. Based on resistor-capacitor thermal networks, either steady-state or transient thermal simulations can be performed. A two-zone, quasi-dimensional spark-ignition engine simulation is used to determine in-cylinder gas temperature and convection coefficients. Engine heat fluxes and component temperatures can subsequently be predicted from specification of general engine dimensions, materials, and operating conditions. Emphasis has been placed on minimizing the number of model inputs and keeping them as simple as possible to make the model practical and useful as an early design tool. The success of the global model depends on properly scaling the general engine inputs to accurately model engine heat flow paths across families of engine designs. The development and validation of suitable, scalable submodels is described in detail in this paper.
Journal Article

A High-Resolution Surface Image Capture and Mapping System for Public Roads

2017-03-28
2017-01-0082
This paper presents a system designed to develop a high-resolution map of public roads by capturing high-resolution surface images. Unlike conventional system, the proposed system applies a field programmable gate array (FPGA) to synchronize camera, Inertial Measurement Unit (IMU), and Global Positioning System (GPS) by using FPGA’s high clock frequency and flexibility to multiple devices. The proposed system, which can be mounted on a regular vehicle, contains a Complementary Metal–Oxide–Semiconductor (CMOS) camera which can achieve 0.006 ms shutter speed and 150 fps frame rate. This camera’s high shutter speed and high frame rate can help capturing images with overlapping region at fast driving speed so that no area is missing from road surface image capturing.
Technical Paper

A Hybrid Electric Vehicle Thermal Management System - Nonlinear Controller Design

2015-04-14
2015-01-1710
The components in a hybrid electric vehicle (HEV) powertrain include the battery pack, an internal combustion engine, and the electric machines such as motors and possibly a generator. These components generate a considerable amount of heat during driving cycles. A robust thermal management system with advanced controller, designed for temperature tracking, is required for vehicle safety and energy efficiency. In this study, a hybridized mid-size truck for military application is investigated. The paper examines the integration of advanced control algorithms to the cooling system featuring an electric-mechanical compressor, coolant pump and radiator fans. Mathematical models are developed to numerically describe the thermal behavior of these powertrain elements. A series of controllers are designed to effectively manage the battery pack, electric motors, and the internal combustion engine temperatures.
Technical Paper

A Knowledge Representation Scheme for Nondestructive Testing of Composite Components

1990-02-01
900070
This paper presents our efforts to formalize the knowledge domain of nondestructive quality control of automotive composite components with organic (resin) matrices and to develop a prototype knowledge-based system, called NICC for Nondestructive Inspection of Composite Components, to help in the quality assurance of individual components. Geometric and bonding characteristics of parts and assemblies are taken into account, as opposed to the better understood evaluation of test specimens. The reasoning process was divided in two stages: in the first stage all flaws that might be present in the given part are characterized; in the second stage appropriate nondestructive testing procedures are specified to detect each of the possible flaws. The use of nondestructive techniques in the inspection of composites is fairly recent and hence, the knowledge required to develop an expert system is still very scattered and not fully covered in the literature.
Technical Paper

A LNT+SCR System for Treating the NOx Emissions from a Diesel Engine

2006-04-03
2006-01-0210
An aftertreatment system involving a LNT followed by a SCR catalyst is proposed for treating the NOx emissions from a diesel engine. NH3 (or urea) is injected between the LNT and the SCR. The SCR is used exclusively below 400°C due to its high NOx activity at low temperatures and due to its ability to store and release NH3 below 400°C, which helps to minimize NH3 and NOx slip. Above 400°C, where the NH3 storage capacity of the SCR falls to low levels, the LNT is used to store the NOx. A potassium-based LNT is utilized due to its high temperature NOx storage capability. Periodically, hydrocarbons are oxidized on the LNT under net lean conditions to promote the thermal release of the NOx. NH3 is injected simultaneously to reduce the released NOx over the SCR. The majority of the hydrocarbons are oxidized on the front portion of the LNT, resulting in the rapid release of stored NOx from that portion of the LNT.
Technical Paper

A Magic Cube Approach for Crashworthiness Design

2006-04-03
2006-01-0671
Vehicle structure crashworthiness design is one of the most challenging problems in product development and it has been studied for decades. Challenges still remain, which include developing a reliable and systematic approach for general crashworthiness design problems, which can be used to design an optimum vehicle structure in terms of topology, shape, and size, and for both structural layout and material layout. In this paper, an advanced and systematic approach is presented, which is called Magic Cube (MQ) approach for crashworthiness design. The proposed MQ approach consists of three major dimensions: Decomposition, Design Methodology, and General Considerations. The Decomposition dimension is related to the major approaches developed for the crashworthiness design problem, which has three layers: Time (Process) Decomposition, Space Decomposition, and Scale Decomposition.
X