Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Automotive Cabin Filtration In-Vehicle Test Results

1994-03-01
940318
This paper quantifies typical United States in-vehicle cowl area particulate filter parameters such as temperature, humidity and environmental conditions. Secondly, United States and Germany particulate filter fleet results will be included to help quantify the effect of loading on electret nonwoven particulate filter fractional efficiency and demonstrate the amount and types of particulate matter captured. Finally the paper will address the low submicron fractional filter efficiency of a simulated production “wet and dry” plate-fin automotive evaporator core.
Technical Paper

Comparison and Optimization of Fourier Transform Infrared Spectroscopy and Gas Chromatography-Mass Spectroscopy for Speciating Unburned Hydrocarbons from Diesel Low Temperature Combustion

2017-03-28
2017-01-0992
Partially premixed low temperature combustion (LTC) in diesel engines is a strategy for reducing soot and NOX formation, though it is accompanied by higher unburned hydrocarbon (UHC) emissions compared to conventional mixing-controlled diesel combustion. In this work, two independent methods of quantifying light UHC species from a diesel engine operating in early LTC (ELTC) modes were compared: Fourier transform infrared (FT-IR) spectroscopy and gas chromatography-mass spectroscopy (GC-MS). A sampling system was designed to capture and transfer exhaust samples for off-line GC-MS analysis, while the FT-IR sampled and quantified engine exhaust in real time. Three different ELTC modes with varying levels of exhaust gas recirculation (EGR) were implemented on a modern light-duty diesel engine. GC-MS and FT-IR concentrations were within 10 % for C2H2, C2H4, C2H6, and C2H4O. While C3H8 was identified and quantified by the FT-IR, it was not detected by the GCMS.
Technical Paper

Effect of Local Hand Thermal Insulation on Total and Local Comfort Under Different Levels of Body Heat Deficit

2005-07-11
2005-01-2977
Introduction: There are contradictory opinions regarding the contribution of local hand thermal insulation to support local and total comfort during extravehicular activity (EVA). Instead of a local correction by means of thermal insulation on the periphery of the body to prevent heat dissipation, it may be optimal to prevent heat dissipation from the body core. To examine such a concept, the effects of different insulation levels on the left and right hands on the heat flux and temperature mosaic on the hands was measured. These variables were assessed in relation to the level of heat deficit forming in the core organs and tissues. Methods: Six subjects (4 males, 2 females) were donned in a liquid cooling/warming garment (LCWG) that totally covered the body surface except for the face. Participants wore the Phase VI space gloves including the entire micrometeoroid garment (TMG) on the left hand, and the glove without the TMG on the right hand.
Journal Article

Investigation of Fuel Effects on In-Cylinder Reforming Chemistry Using Gas Chromatography

2016-04-05
2016-01-0753
Negative Valve Overlap (NVO) is a potential control strategy for enabling Low-Temperature Gasoline Combustion (LTGC) at low loads. While the thermal effects of NVO fueling on main combustion are well-understood, the chemical effects of NVO in-cylinder fuel reforming have not been extensively studied. The objective of this work is to examine the effects of fuel molecular structure on NVO fuel reforming using gas sampling and detailed speciation by gas chromatography. Engine gas samples were collected from a single-cylinder research engine at the end of the NVO period using a custom dump-valve apparatus. Six fuel components were studied at two injection timings: (1) iso-octane, (2) n-heptane, (3) ethanol, (4) 1-hexene, (5) cyclohexane, and (6) toluene. All fuel components were studied neat except for toluene - toluene was blended with 18.9% nheptane by liquid volume to increase the fuel reactivity.
Technical Paper

Maximal Conductive Heat Exchange through Different Body Zones in a Liquid Cooling/Warming Space Garment

2000-07-10
2000-01-2255
The maximal capability of several body areas to absorb/release heat by varying the circulating water temperature in different zones of a multi-compartment liquid cooling/warming garment (LCWG) was explored. The goal was to identify the areas that are highly effective to stabilize body comfort, and to use this information for developing a more physiologically-based design of the space suit. The results showed a high capability of the upper compared to the lower body in the conductive heat exchange process. The involvement of the head in this process is still problematic, because there was not a high level of direct heat absorption/release through the cooling/warming hood in the LCWG. Exclusion of the legs but with involvement of the feet in heat exchange had no effect on comfort of the distal parts of the extremities and core body status.
Technical Paper

Nanoparticle Growth During Dilution and Cooling of Diesel Exhaust: Experimental Investigation and Theoretical Assessment

2000-03-06
2000-01-0515
Nanoparticle formation during exhaust sampling and dilution has been examined using a two-stage micro-dilution system to sample the exhaust from a modern, medium-duty diesel engine. Growth rates of nanoparticles at different exhaust dilution ratios and temperatures have been determined by monitoring the evolution of particle size distributions in the first stage of the dilution system. Two methods, graphical and analytical, are described to determine particle growth rate. Extrapolation of size distribution down to 1 nm in diameter has been demonstrated using the graphical method. The average growth rate of nanoparticles is calculated using the analytical method. The growth rate ranges from 6 nm/sec to 24 nm/sec, except at a dilution ratio of 40 and primary dilution temperature of 48 °C where the growth rate drops to 2 nm /sec. This condition seems to represent a threshold for growth. Observed nucleation and growth patterns are consistent with predictions of a simple physical model.
Technical Paper

Particle and Gaseous Emission Characteristics of a Formula SAE Race Car Engine

2009-04-20
2009-01-1400
The focus of this work was the physical characterization of exhaust aerosol from the University of Minnesota Formula SAE team's engine. This was done using two competition fuels, 100 octane race fuel and E85. Three engine conditions were evaluated: 6000 RPM 75% throttle, 8000 RPM 50% throttle, and 8000 RPM 100% throttle. Dilute emissions were characterized using a Scanning Mobility Particle Sizer (SMPS) and a Condensation Particle Counter (CPC). E85 fuel produced more power and had lower particulate matter emissions at all test conditions, but more fuel was consumed.
Technical Paper

Real Time Measurement of Volatile and Solid Exhaust Particles Using a Catalytic Stripper

1995-02-01
950236
A system has been developed that allows near real time measurements of total, volatile, and nonvolatile particle concentrations in engine exhaust. It consists of a short section of heated catalyst, a cooling coil, and an electrical aerosol analyzer. The performance of this catalytic stripper system has been characterized with nonvolatile (NaCl), volatile sulfate ((NH4)2 SO4), and volatile hydrocarbon (engine oil) particles with diameters ranging from 0.05-0.5 μm. The operating temperature of 300°C gives essentially complete removal of volatile sulfate and hydrocarbon particles, but also leads to removal of 15-25% of solid particles. This system has been used to determine total, volatile, and nonvolatile particle concentrations in the exhaust of a Diesel engine and a spark ignition engine. Volatile volume fractions measured in Diesel exhaust with the catalytic stripper system increased from 19-65% as the equivalence ratio (load) decreased from 0.64-0.13.
Technical Paper

Results of the Third Long-Term Cycle at the University of Minnesota Aquifer Thermal Energy Storage (ATES) Field Test Facility

1992-08-03
929051
The third long-term ATES cycle (LT3) was conducted between October 1989 and March 1990. Objectives of LT3 were to demonstrate that high-temperature ATES could supply a real heating load and to simplify the water chemistry modeling. For LT3 the Field Test Facility (FTF) was connected to a nearby campus building to demonstrate the FTF's ability to meet a real heating load. For LT3 the wells were modified so that only the most permeable portions of the Ironton-Galesville aquifer were used to simplify water chemistry comparisons and modeling. The campus steam plant was the source for heat stored during LT3. A total volume of 63.2 x 103 m3 of water was injected at a rate of 54.95 m3/hr into the storage well at a mean temperature of 104.7°C from October through December 1989. Tie-in to the Animal Sciences Veterinary Medicine (ASVM) building was not completed until late December.
Technical Paper

Single-Stage Dilution Tunnel Performance

2001-03-05
2001-01-0201
A one-stage dilution tunnel has been developed to sample and dilute diesel exhaust. The tunnel has the capability of simulating many aspects of the atmospheric dilution process. The dilution rate and overall dilution ratio, temperature, relative humidity, and residence time in the tunnel, as well as residence time and temperature in the transfer line between the tunnel and exhaust sampling point may be varied. In this work we studied the influence of the exhaust transfer line, tunnel residence time, and dilution air temperature on the exhaust particle size distribution. The influences of fuel sulfur content on the size distribution and on the sensitivity of the size distribution to dilution and sampling conditions were also examined. We do not suggest an optimum dilution scheme, but do identify critical variables.
Technical Paper

The Advanced Design of a Liquid Cooling Garment Through Long-Term Research: Implications of the Test Results on Three Different Garments

2009-07-12
2009-01-2517
The most recent goal of our research program was to identify the optimal features of each of three garments to maintain core temperature and comfort under intensive physical exertion. Four males and 2 females between the ages of 22 and 46 participated in this study. The garments evaluated were the MACS-Delphi, Russian Orlan, and NASA LCVG. Subjects were tested on different days in 2 different environmental chamber temperature/humidity conditions (24°C/H∼28%; 35°C/H∼20%). Each session consisted of stages of treadmill walking/running (250W to 700W at different stages) and rest. In general, the findings showed few consistent differences among the garments. The MACS-Delphi was better able to maintain subjects within a skin and core temperature comfort zone than was evident in the other garments as indicated by a lesser fluctuation in temperatures across physical exertion levels.
Technical Paper

The Influence of Dilution Conditions on Diesel Exhaust Particle Size Distribution Measurements

1999-03-01
1999-01-1142
Particle size distribution and number concentration measurements have been made in the diluted exhaust of a medium-duty, turbocharged, aftercooled, direct-injection Diesel engine using a unique variable residence time micro-dilution system that allows systematic variation of dilution and sampling conditions, and a scanning mobility particle sizer (SMPS). The measurements show that the number concentrations in the nanoparticle (Dp < 50 nm) and the ultrafine (Dp < 100 nm) ranges are very sensitive to dilution conditions and fuel sulfur content. Changes in concentration of up to two orders of magnitude have been observed when conditions are varied over the range that might be encountered in typical laboratory dilution systems. For example, at a dilution ratio of 12, dilution temperature of 32 °C, and a residence time of 1000 ms, the number concentrations reach 6 × 108 part.
Technical Paper

Three-Dimensional Computations of Diesel Sprays in a Very High Pressure Chamber

1994-10-01
941896
Results of three-dimensional computations of non-vaporizing and vaporizing Diesel sprays in a very high pressure (up to 18.4 MPa without combustion) environment are presented. These pressures and corresponding density ratios of ambient gas to injected liquid are about a factor of two greater than those in current Diesel engines. The spray model incorporates a line source for drops, heat, mass and momentum exchange between the gas and liquid phases, turbulent dispersion of drops, collisions and coalescences, and drop breakup. The accuracy of the model is assessed by making comparisons of computed and measured spray penetrations. Reasonable agreement is obtained for a broad range of conditions. A scaling for time and axial distance clarifies these results.
Technical Paper

Three-Dimensional Modeling of Soot and NO in a Direct-injection Diesel Engine

1995-02-01
950608
Results of comparisons of computed and measured soot and NO in a direct-injection Diesel engine are presented. The computations are carried out using a three-dimensional model for flows, sprays and combustion in Diesel engines. Autoignition of the Diesel spray is modeled using an equation for a progress variable which measures the local and instantaneous tendency of the fuel to autoignite. High temperature chemistry is modeled using a local chemical equilibrium model coupled to a combination of laminar kinetic and turbulent characteristic times. Soot formation is kinetically controlled and soot oxidation is represented by a model which has a combination of laminar kinetic and turbulent mixing times. Soot oxidation appears to be controlled near top-dead-center by mixing and by kinetics as the exhaust is approached. NO is modeled using the Zeldovich mechanism.
X