Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Random Forest Algorithmic Approach to Predicting Particulate Emissions from a Highly Boosted GDI Engine

2021-09-05
2021-24-0076
Particulate emissions from gasoline direct injection (GDI) engines continue to be a topic of substantial research interest. Forthcoming regulation both in the USA and the EU will further reduce their emission and drive innovation. Substantial research effort is spent undertaking experiments to understand, characterize, and research particle number (PN) emissions from engines and vehicles. Recent advances in computing power, data storage, and understanding of artificial intelligence algorithms now mean that these are becoming an important tool in engine research. In this work a random forest (RF) algorithm is used for the prediction of PN emissions from a highly boosted (up to 32 bar BMEP) GDI engine. Particle size, concentration, and the accumulation mode geometric standard deviation (GSD) are all predicted by the model. The results are analysed and an in depth study on parameter importance is carried out.
Technical Paper

A Study on Kinetic Mechanisms of Diesel Fuel Surrogate n-Dodecane for the Simulation of Combustion Recession

2019-04-02
2019-01-0202
Combustion recession, an end of injection (EOI) diesel spray phenomenon, has been found to be a robust correlation parameter for UHC in diesel LTC strategies. Previous studies have shown that the likelihood of capturing combustion recession in numerical simulations is highly dependent on the details of the low-temperature chemistry reaction mechanisms employed. This study aims to further the understanding of the effects of different chemical mechanisms in the prediction of a reactive diesel spray and its EOI process: combustion recession. Studies were performed under the Engine Combustion Network’s (ECN) “Spray A” conditions using the Reynolds-Averaged Navier-Stokes simulation (RANS) and the Flamelet Generated Manifold (FGM) combustion model with four different chemical mechanisms for n-dodecane that are commonly used in the engine simulation communities - including recently developed reduced chemistry mechanisms.
Technical Paper

A Study on the Effects of Cetane Number on the Energy Balance between Differently Sized Engines

2017-03-28
2017-01-0805
This paper investigates the effect of the cetane number (CN) of a diesel fuel on the energy balance between a light duty (1.9L) and medium duty (4.5L) diesel engine. The two engines have a similar stroke to bore (S/B) ratio, and all other control parameters including: geometric compression ratio, cylinder number, stroke, and combustion chamber, have been kept the same, meaning that only the displacement changes between the engine platforms. Two Coordinating Research Council (CRC) diesel fuels for advanced combustion engines (FACE) were studied. The two fuels were selected to have a similar distillation profile and aromatic content, but varying CN. The effects on the energy balance of the engines were considered at two operating conditions; a “low load” condition of 1500 rev/min (RPM) and nominally 1.88 bar brake mean effective pressure (BMEP), and a “medium load” condition of 1500 RPM and 5.65 BMEP.
Technical Paper

ASTM Unwashed Gum and the Propensity of a Fuel to Form Combustion Chamber Deposits

2000-06-19
2000-01-2026
An investigative group set up under the auspices of the CEC (Coordinating European Council) collected data on combustion chamber deposits (CCD), ASTM unwashed gum (UWG) results and the thermogravimetric analysis (TGA) of these gums for different fuels from many different sources. The analysis of this data shows that UWG cannot and does not predict CCD. It is not possible to use UWG or any aspect of its behaviour in the TGA to assess the CCD-forming tendency of randomly chosen fuels.
Technical Paper

Ammonia Emissions from Combustion in Gasoline Engines

2023-10-31
2023-01-1655
Forthcoming worldwide emissions regulations will start regulating ammonia emissions from light duty vehicles. At present, most light duty vehicles are powered by gasoline spark ignition engines. Sources of ammonia emission from such engines can be in-cylinder reactions (i.e. combustion) or downstream reactions across aftertreatment devices, particularly three-way catalysts. The latter has been known to be a major source of ammonia emissions from gasoline vehicles and has been extensively investigated. The former (combustion), less so, and thus is the subject of this work. A two-zone thermodynamic spark ignition engine model with a comprehensive chemical kinetics framework (C3MechV3.3 mechanism), after being validated against experimental ammonia emissions data, is used to study ammonia formation during combustion.
Technical Paper

Amplified Pressure Waves During Autoignition: Relevance to CAI Engines

2002-10-21
2002-01-2868
Controlled autoignition (CAI) engines ideally operate at very lean stoichiometries to achieve low NOx emissions. But at high loads, when combustion approaches stoichiometric, they become noisy and severe engine knock develops. A possible cause is the development of amplifying pressure waves near the hot spots that inevitably occur in the autoigniting gas. This paper presents the results from numerical solutions at realistic engine conditions of the detailed chemical kinetic equations with acoustic wave propagation. Those calculations that involve hot spots must include a spatial dimension. Because of this, they are much more time-consuming than for the homogeneous case. A model system of mixtures of 0.5 H2-0.5 CO with air for equivalence ratios, ϕ, between 0.45 and 1.0 has been used at engine-like temperatures and pressures. These calculations investigate the behaviour for various values of ϕ, hot spot size and temperature elevation.
Journal Article

An Investigation into the Characteristics of DISI Injector Deposits Using Advanced Analytical Methods

2014-10-13
2014-01-2722
There is an increasing recognition of injector deposit (ID) formation in fuel injection equipment as direct injection spark ignition (DISI) engine technologies advance to meet increasingly stringent emission legislation and fuel economy requirements. While it is known that the phenomena of ID in DISI engines can be influenced by changes in fuel composition, including increasing usage of aliphatic alcohols and additive chemistries to enhance fuel performance, there is however still a great deal of uncertainty regarding the physical and chemical structure of these deposits, and the mechanisms of deposit formation. In this study, a mechanical cracking sample preparation technique was developed to assess the deposits across DISI injectors fuelled with gasoline and blends of 85% ethanol (E85).
Journal Article

Applying Design of Experiments to Determine the Effect of Gas Properties on In-Cylinder Heat Flux in a Motored SI Engine

2012-04-16
2012-01-1209
Models for the convective heat transfer from the combustion gases to the walls inside a spark ignition engine are an important keystone in the simulation tools which are being developed to aid engine optimization. The existing models have, however, been cited to be inaccurate for hydrogen, one of the alternative fuels currently investigated. One possible explanation for this inaccuracy is that the models do not adequately capture the effect of the gas properties. These have never been varied in a wide range because air and ‘classical’ fossil fuels have similar values, but they are significantly different in the case of hydrogen. As a first step towards a fuel independent heat transfer model, we have investigated the effect of the gas properties on the heat flux in a spark ignition engine.
Technical Paper

Assessment of Empirical Heat Transfer Models for a CFR Engine Operated in HCCI Mode

2015-04-14
2015-01-1750
Homogeneous charge compression ignition (HCCI) engines are a promising alternative to traditional spark- and compression-ignition engines, due to their high thermal efficiency and near-zero emissions of NOx and soot. Simulation software is an essential tool in the development and optimization of these engines. The heat transfer submodel used in simulation software has a large influence on the accuracy of the simulation results, due to its significant effect on the combustion. In this work several empirical heat transfer models are assessed on their ability to accurately predict the heat flux in a CFR engine during HCCI operation. Models are investigated that are developed for traditional spark- and compression-ignition engines such as those from Annand [1], Woschni [2] and Hohenberg [3] and also models developed for HCCI engines such as those from Chang et al. [4] and Hensel et al. [5].
Technical Paper

Burn Rate and Instantaneous Heat Flux Study of Iso-octane, Toluene and Gasoline in a Spray-Guided Direct-Injection Spark-Ignition Engine

2008-04-14
2008-01-0469
The burn rate and the instantaneous in-cylinder heat transfer have been studied experimentally in a spray-guided direct-injection spark-ignition engine with three different fuels: gasoline, iso-octane and toluene. The effects of the ignition timing, air fuel ratio, fuel injection timing and injection strategy (direct injection or port injection) on the burn rate and the in-cylinder heat transfer have been experimentally investigated at a standard mapping point (1500 rpm and 0.521 bar MAP) with the three different fuels. The burn rate analysis was deduced from the in-cylinder pressure measurement. A two-dimensional heat conduction model of the thermocouple was used to calculate the heat flux from the measured surface temperature. An engine thermodynamic simulation code was used to predict the gas-to-wall heat transfer.
Technical Paper

Cold Start Particulate Emissions from a Second Generation DI Gasoline Engine

2007-07-23
2007-01-1931
Spray guided Direct Injection Gasoline Engines are a key enabler to reducing CO2 emissions and improving the fuel economy of light duty vehicles. Particulate emissions from these engines have been shown to be lower than from first generation direct injection gasoline engines, but they may still be significantly higher than port fuel injected engines due to the reduced time available for mixture preparation and increased incidence of fuel impingement on the piston crown and combustion chamber surfaces. These factors are particularly severe in the period following a cold start. Both nuclei and accumulation mode particle size and number concentration were measured using a Cambustion differential mobility spectrometer. These data are reported for different coolant temperature intervals during the warm-up period. The bulk composition was determined using thermo-gravimetric analysis, and PM mass fractions are given for different volatility ranges and for elemental carbon.
Technical Paper

Combustion Chamber Deposit Flaking

2000-10-16
2000-01-2858
There is increasing concern that small flakes of combustion chamber deposits (CCD) can break lose and get trapped between the exhaust valve and the seat resulting in difficulties in starting, rough running and increase in hydrocarbon emissions. In this paper we describe experimental observations which might explain how this flaking of CCD occurs and the factors that might be important in the phenomenon. The experiments include thirty one engine tests as well as tests done in a laboratory rig and show that some CCD flake when they are exposed to water; indeed water is far more effective in bringing this about than gasoline or other organic solvents. The hydrophilicity of the deposit surface which determines the penetration of water and the inherent susceptibility of the relevant deposit layer to inter-act with water are both important. Consequently there are large differences between deposits produced by different fuels and additives in terms of their susceptibility to flake.
Technical Paper

Combustion Chamber Deposit Flaking and Startability Problems in Three Different Engines

2003-10-27
2003-01-3187
A field problem associated with flakes of combustion chamber deposits getting trapped on the exhaust valve seat and causing starting problems has appeared recently. Four fuels have been tested in three different car models using a deposit flaking road test procedure. For each piston top, flaking can be characterised using T1 and T2, the mean deposit thickness on the piston crown before and after flaking respectively. A new measure of deposit flaking, ΔT, the mean of (T1-T2) averaged over all cylinders has been introduced and its variance established for the standard test using one of the models. ΔT quantifies the actual amount of deposits that have flaked and is likely to be a more relevant indicator of flaking for startability problems than Rw, the mean of the ratio of T2 to T1, used in previous work. Deposit flaking is directly related to an increase in valve leakage rates and startability problems.
Technical Paper

Combustion Imaging and Analysis in a Gasoline Direct Injection Engine

2004-03-08
2004-01-0045
A single cylinder Direct Injection Spark Ignition (DISI) engine with optical access has been used for combustion studies with both early injection and late injection for stratified charge operation. Cylinder pressure records have been used for combustion analysis that has been synchronised with the imaging. A high speed cine camera has been used for imaging combustion within a cycle, while a CCD camera has been used for imaging at fixed crank angles, so as to obtain information on cycle-by-cycle variations. The CCD images have also been analysed to give information on the quantity of soot present during combustion. Tests have been conducted with a reference unleaded gasoline (ULG), and pure fuel components: iso-octane (a representative alkane), and toluene (a representative aromatic). The results show diffusion-controlled combustion occurring in so-called homogeneous combustion with early injection.
Technical Paper

Combustion and Emissions Performance Analysis of Conventional and Future Fuels using Advanced CAE

2013-10-14
2013-01-2673
In recent years, there has been rapid progress in characterizing the detailed chemical kinetics associated with the oxidation of liquid hydrocarbons and their blends. However adding these fuel models to the industrial engineer's toolkit has proven a major challenge due to issues associated with high CPU cost and the poor suitability of many of the most promising and well known fuel models to IC engine applications. This paper demonstrates the state-of-the-art in the analysis and modelling of current and future transportation fuels or fuel blends for internal combustion engine applications. First-of-all, a benchmarking of eleven representative fuel models (39 to 1034 species in size) is carried out at engine/engine-like operating conditions by adopting the standard Research Octane and Cetane Number test data for comparison. Next, methods to construct a fuel model for a commercial fuel are outlined using a simple, yet robust surrogate mapping technique.
Technical Paper

Combustion of LPG in a Spark-Ignition Engine

2004-03-08
2004-01-0974
Tax concessions promote the use of Liquefied Petroleum Gas (LPG) fuel for automotive use in Europe. Modelling of the LPG evaporation process shows the importance of drawing the liquid from the tank rather than the gas, otherwise the most volatile component (propane) is used more quickly and the composition of the remaining fuel changes. It is shown that the LPG components have similar calorific values to gasoline, however injecting the LPG as a gas into the inlet port causes a loss of volumetric efficiency and peak power. The experimental results showed: The LPG fuels have similar burn rates and optimum ignition timing to gasoline. The Lean Mixture Limit (LML) of the gaseous fuels was weaker than that for gasoline.
Technical Paper

Comparing Real Driving Emissions from Euro 6d-TEMP Vehicles Running on E0 and E10 Gasoline Blends

2023-10-31
2023-01-1662
Several governments are increasing the blending mandate of renewable fuels to reduce the life-cycle greenhouse gas emissions of the road transport sector. Currently, ethanol is a prominent renewable fuel and is used in low-level blends, such as E10 (10 %v/v ethanol, 90 %v/v gasoline) in many parts of the world. However, the exact concentration of ethanol amongst other renewable fuel components in commercially available fuels can vary and is not known. To understand the impact of the renewable fuel content on the emissions from Euro 6d-TEMP emissions specification vehicles, this paper examines the real-driving emissions (RDE) from four 2020 to 2022 model-year vehicles run on E0 and E10 fuels. CO, CO2, NO, and NO2 were measured through a Portable Emissions Measuring System (PEMS).
Technical Paper

Comparing the Effect of Fuel/Air Interactions in a Modern High-Speed Light-Duty Diesel Engine

2017-09-04
2017-24-0075
Modern diesel cars, fitted with state-of-the-art aftertreatment systems, have the capability to emit extremely low levels of pollutant species at the tailpipe. However, diesel aftertreatment systems can represent a significant cost, packaging and maintenance requirement. Reducing engine-out emissions in order to reduce the scale of the aftertreatment system is therefore a high priority research topic. Engine-out emissions from diesel engines are, to a significant degree, dependent on the detail of fuel/air interactions that occur in-cylinder, both during the injection and combustion events and also due to the induced air motion in and around the bowl prior to injection. In this paper the effect of two different piston bowl shapes are investigated.
Technical Paper

Comparing the Effect of a Swirl Flap and Asymmetric Inlet Valve Opening on a Light Duty Diesel Engine

2017-10-08
2017-01-2429
Diesel engine designers often use swirl flaps to increase air motion in cylinder at low engine speeds, where lower piston velocities reduce natural in-cylinder swirl. Such in-cylinder motion reduces smoke and CO emissions by improved fuel-air mixing. However, swirl flaps, acting like a throttle on a gasoline engine, create an additional pressure drop in the inlet manifold and thereby increase pumping work and fuel consumption. In addition, by increasing the fuel-air mixing in cylinder the combustion duration is shortened and the combustion temperature is increased; this has the effect of increasing NOx emissions. Typically, EGR rates are correspondingly increased to mitigate this effect. Late inlet valve closure, which reduces an engine’s effective compression ratio, has been shown to provide an alternative method of reducing NOx emissions.
Technical Paper

Comparison of Transient Diesel Spray Break-Up between Two Computational Fluid Dynamics Codes

2018-04-03
2018-01-0307
Accurate modeling of the initial transient period of spray development is critical within diesel engines, as it impacts on the amount of vapor penetration and hence the combustion characteristics of the spray. In addition, in multiple injection schemes shorter injections will be mostly, if not totally, within the initial transient period. This paper investigates how two different commercially available Computational Fluid Dynamics (CFD) codes (hereafter noted as Code 1 and Code 2) simulate transient diesel spray atomization, in a non-combusting environment. The case considered for comparison is a single-hole injection of n-dodecane representing the Engine Combustion Network’s ‘Spray A’ condition. It was identified that the different spray break-up models used by the codes (Reitz-Diwakar for Code 1, Kelvin-Helmholtz/Rayleigh-Taylor (KH-RT) for Code 2) had a significant impact on the transient liquid penetration.
X