Refine Your Search

Topic

Author

Search Results

Technical Paper

A Generic Testbody for Low-Frequency Aeroacoustic Buffeting

2020-09-30
2020-01-1515
Raising demands towards lightweight design paired with a loss of originally predominant engine noise pose significant challenges for NVH engineers in the automotive industry. From an aeroacoustic point of view, low frequency buffeting ranks among the most frequently encountered issues. The phenomenon typically arises due to structural transmission of aerodynamic wall pressure fluctuations and/or, as indicated in this work, through rear vent excitation. A possible workflow to simulate structure-excited buffeting contains a strongly coupled vibro-acoustic model for structure and interior cavity excited by a spatial pressure distribution obtained from a CFD simulation. In the case of rear vent buffeting no validated workflow has been published yet. While approaches have been made to simulate the problem for a real-car geometry such attempts suffer from tremendous computation costs, meshing effort and lack of flexibility.
Technical Paper

Active Steering - The BMW Approach Towards Modern Steering Technology

2004-03-08
2004-01-1105
For the first time, the BMW Active Steering system allows driver-independent steering intervention at the front axle with the mechanical link between the steering wheel and the front axle still in place. The system is primarily comprised of a rack-and-pinion steering system, a double planetary gear and an electric actuator motor. This new level of freedom enables continuous and situation-dependent variation of the steering ratio and therefore adaptation of the transmission behaviour between the steering wheel and the vehicle's reaction to the relevant driving situation. Comfort, steering effort, handling and directional stability have been extensively optimised as a result of this. In addition, driver-independent steering intervention also guarantees vehicle stabilisation in critical driving situations. As a world exclusive, the new Active Steering system will be available for the first time as an option in the new BMW 5 Series.
Technical Paper

Advanced Driver Assistance: Chances and Limitations on the Way to Improved Active Safety

2007-04-16
2007-01-1738
Advanced Driver Assistance systems support the driver in his driving tasks. They can be designed to enhance the driver's performance and/or to take over unpleasant tasks from the driver. An important optimization goal is to maintain the driver's activation at a moderate level, avoiding both stress and boredom. Functions requiring a situational interpretation based on the vehicle environment are associated with lower performance reliability than typical stability control systems. Thus, driver assistance systems are designed assuming that drivers will monitor the assistance function while maintaining full control over the vehicle, including the opportunity to override as required. Advanced driver assistance systems have a substantial potential to increase active safety performance of the vehicle, i.e., to mitigate or avoid traffic accidents.
Technical Paper

Advanced material technologies meeting the challenges of automotive engineering

2000-06-12
2000-05-0049
Advanced material technologies play a key role in automotive engineering. The main objective of the development of advanced material technologies for automotive applications is to promote the desired properties of a vehicle. It is characteristic of most materials in modern cars that they have been developed especially for automotive requirements. Requirements are not only set by the customer who expects the maximum in performance, comfort, reliability, and safety from a modern car. Existing legal regulations also have to be met, e.g., in the areas of environmental compatibility, resource preservation, and minimization of emissions. To achieve goals like weight reduction or increased engine performance permanent material developments are essential. In this paper, numerous examples chosen from body, suspension, and powertrain components show clearly how low weight technologies, better comfort, and high level of recyclability can be achieved by advanced material solutions.
Technical Paper

Aerodynamic Forces of Exposed and Enclosed Rotating Wheels as an Example of the Synergy in the Development of Racing and Passenger Cars

2006-04-03
2006-01-0805
The aim of this report is to present the results obtained from the wind tunnel tests performed in the BMW wind tunnel regarding the pressure distribution on a rotating wheel. The acquired data is used to examine its flow topology for the “open” and “enclosed” cases and determine the wheel drag, lift and side forces by integrating the pressure distribution on its surface. The investigation concerned such measurements on a half scale model wheel. Its pressure distribution was identified with and without the presence of a racecar body. The wheel was also mounted on a half scale passenger car body and pressure measurements were taken with and without a wheel spoiler. After the pressure distributions were known for all configurations, the aerodynamic forces generated were determined. The influence of boundary layer thickness on them was also investigated. A better understanding of the forces the model wheel is subjected to is gained.
Technical Paper

An Advanced Process for Virtual Evaluation of the Dimensional Resistance of Interior Parts

2006-04-03
2006-01-1475
The importance of the automotive interior as a characteristic feature in the competition for the goodwill of the customer has increased significantly in recent years. Whilst there are established, more or less efficient CAE processes for the solution of problems in the areas of occupant safety and service strength, until now the implementation of CAE in themes such as dimensional stability, warpage and corrugation1 of plastic parts has been little investigated. The developmental support in this field is predominantly carried out by means of hardware tests. Real plastic components alter their form as a result of internal forces often during the first weeks following production. The process, known as “creep”, can continue over an extended period of time and is exacerbated by high ambient temperatures and additional external loads stemming from installation and post assembly position.
Technical Paper

Analysis of Underbody Windnoise Sources on a Production Vehicle using a Lattice Boltzmann Scheme

2007-05-15
2007-01-2400
A computational analysis of underbody windnoise sources on a production automobile at 180 km/h free stream air speed and 0° yaw is presented. Two different underbody geometry configurations were considered for this study. The numerical results have been obtained using the commercial software PowerFLOW. The simulation kernel of this software is based on the numerical scheme known as the Lattice-Boltzmann Method (LBM), combined with a two-equation RNG turbulence model. This scheme accurately captures time-dependent aerodynamic behavior of turbulent flows over complex detailed geometries, including the pressure fluctuations causing wind noise. Comparison of pressure fluctuations levels mapped on a fluid plane below the underbody shows very good correlation between experiment and simulation. Detailed flow analysis was done for both configurations to obtain insight into the transient nature of the flow field in the underbody region.
Technical Paper

BMW High Precision Fuel Injectionin Conjunction with Twin-Turbo Technology: a Combination for Maximum Dynamic and High Fuel Efficiency

2007-04-16
2007-01-1560
The new inline six cylinder Twin-Turbo gasoline engine forms the pinnacle of BMW's wide range of straight-six power units, developing maximum output of 300hp and a peak torque of 300 lb-ft with a displacement of 3.0 litre. Using two turbochargers in combination with the new BMW High Precision Fuel Injection leads to a responsive build-up of torque and to an impressive development of power over a wide engine speed range. This paper gives a detailed overview of the turbocharger-and the injection system and describes the effect of both systems on power and torque, as well as on fuel consumption and emission. The big advantage of using two small turbochargers is their low moment of inertia, even the slightest movement of the accelerator pedal by the driver's foot serving to immediately build up superior pressure and power. This puts an end to the turbo “gap” previously typical of a turbocharged power unit.
Technical Paper

CAE Driven Passive Safety Development for a Sports Activity Vehicle (SAV)

2000-12-01
2000-01-3320
Sport Activity Vehicle (SAV) share a growing market of an entirely new class of vehicles. Outstanding comfort in traditional on-road and also off-road terrain combined with leading edge technology are basic features of this concept. But in addition to that, the SAV has to offer the same overall safety features, expected by e.g. a luxury-segment sedan. A way to ensure the BMW X5 becoming one of the safest cars was the consequent use of simulation techniques in passive safety development. This paper deals with introduction of a CAE driven development process for passive safety in the BMW X5 project, focusing on examples in front and side impact.
Technical Paper

Comparison of Methods Between an Acceleration-Based In-Situ and a New Hybrid In-Situ Blocked Force Determination

2022-06-15
2022-01-0979
The NVH-development cycle of vehicle components often requires a source characterization separated from the vehicle itself, which leads to the implementation of test bench setups. In the context of frequency based substructuring and transfer path analysis, a component can be characterized using Blocked Forces. The following paper provides a comparison of methods between an acceleration-based in-situ and a new hybrid in-situ Blocked Force determination, using measurements of an artificially excited electric power steering (EPS). Under real-life conditions on a test rig, the acceleration-based in-situ approach often shows limitations in the lower frequency range, due to relatively bad signal-to-noise ratio at the indicator sensors, while delivering accurate results in the higher spectrum. Due to considerable loads on components in operation, the stiffness of the test-rig cannot be decreased arbitrarily.
Technical Paper

Enhanced VALVETRONIC Technology for Meeting SULEV Emission Requirements

2006-04-03
2006-01-0849
BMW VALVETRONIC technology is able to maintain the most important measures to reduce emissions. The further optimized charge movement created by VALVETRONIC stabilizes the combustion in the catalyst heating mode with extremely retarded ignition timing. When the engine is warm the high residual gas tolerance ensures very low Engine-Out NOx emissions and at the same time a low level of hydrocarbons. The atomization of fuel droplets due to high flow velocity in the valve gap area leads to improved mixture formation and reduced wall wetting. Engine-Out HC emissions in a cold engine are therefore reduced. Combined, the emission measures achieve robust and efficient emission control. In combination with additional after-treatment like secondary air system and catalysts using high cell density VALVETRONIC engines form an excellent base for SULEV emission regulations without neglecting the typical BMW claim of efficient dynamics.
Technical Paper

Enhancing Navigation Systems with Quality Controlled Traffic Data

2008-04-14
2008-01-0200
As the popularity of vehicle navigation systems rises, incorporating Real Time Traffic Information (RTTI) has been shown to enhance the systems' value by helping drivers avoid traffic delays. As an innovative premium automaker, BMW has developed a testing process to acquire and analyze RTTI data in order to ensure delivery of a high quality service and to enhance the customer experience compared to audible broadcast services. With a methodology to obtain valid and repeatable RTTI data quality measurements, BMW and its service partner, Clear Channel's Total Traffic Network (TTN), can improve its offered service over time, implement corrective measures when appropriate, and confidently ensure the service meets its premium objectives. BMW has partnered with TTN and SoftSolutions GmbH to implement a traffic data quality process and software tools.
Technical Paper

Ergonomic Layout Process for a Driver Working Place in Cars

2006-07-04
2006-01-2313
During early phases of interior car layout a lot of different aspects have to be considered like crashworthiness, regulations, philosophy of the company etc.. Ergonomic aspects do not always play the most important role in these cases. Since aspects of comfort in cars are getting more and more important in nowadays these aspects should be taken into account very early in the interior car layout process. This paper shows a way to design the interior layout of a car from scratch for a good postural comfort for all anthropometries with the aid of a digital human model (RAMSIS). The novelty of this approach is to use the digital human model to design the interior and not to verify or correct an existing one.
Technical Paper

Evaluation of the Recyclability of Vehicles During the Product Development Phases

2000-04-26
2000-01-1469
In a voluntary agreement, the German automobile industry has undertaken to recover 95 percent by weight of End–of–Life Vehicles in the year 2015. In addition, the European draft directive on „End–of–Life Vehicles” recycling calls for evidence that at least than 85 percent by weight of the materials are suitable for material recycling. It is therefore essential while new vehicles are being developed to be in a position to assess their suitability for dismantling and recycling. An automobile consists of a large number of individual components, each of which must be examined separately before a well–founded statement regarding the overall recycling level can be made. For this purpose the BMW Group has developed its own dismantling software which permits virtual dismantling analysis even during a vehicle's development phase and thus enables suitability for recycling to be determined at the earliest possible time.
Technical Paper

Experimental Analysis of the Underbody Pressure Distribution of a Series Vehicle on the Road and in the Wind Tunnel

2008-04-14
2008-01-0802
Underbody aerodynamics has become increasingly important over the last three decades because of its vital contribution to improving a vehicle's overall performance. This was the motivation for the research conducted by BMW Aerodynamics, concerning the determination of the overall pressure distribution on the underbody of a series-production vehicle. Static pressure measurements have been taken under various test conditions. Real on-road tests were carried out as well as wind tunnel experiments under application of different road simulation techniques. The analyzed vehicle configurations include wheel rim-tire and body modifications. The results presented include surface pressure data, drag and lift coefficients, ride heights, pitch and roll angles. The acquired data is used to examine the underbody flow topology and determine how the diverse attempts to represent the real on-road conditions affect its pressure distribution.
Technical Paper

FlexRay - Exploitation of a Standard and Future Prospects

2006-10-16
2006-21-0039
The BMW Group is the first car manufacturer introducing FlexRay in series projects. Start of production is September 2006, where a pilot application is implemented in the chassis domain of the new BMW X5. In 2008 FlexRay will form a substantial part of the overall electronics architecture in form of a FlexRay network connecting multiple ECUs implementing chassis, powertrain, and driver assistance applications.
Journal Article

Further Investigations on the Flow Around a Rotating, Isolated Wheel with Detailed Tread Pattern

2015-04-14
2015-01-1554
Efforts in aerodynamic optimization of road vehicles have been steadily increasing in recent years, mainly focusing on the reduction of aerodynamic drag. Of a car's total drag, wheels and wheel houses account for approx. 25 percent. Consequently, the flow around automotive wheels has lately been investigated intensively. Previously, the authors studied a treaded, deformable, isolated full-scale tire rotating in contact with the ground in the wind tunnel and using the Lattice-Boltzmann solver Exa PowerFLOW. It was shown that applying a common numerical setup, with velocity boundary condition prescribed on the tread, significant errors were introduced in the simulation. The contact patch separation was exaggerated and the flow field from wind tunnel measurements could not be reproduced. This investigation carries on the work by examining sensitivities and new approaches in the setup.
Technical Paper

GPS Augmented Vehicle Dynamics Control

2006-04-03
2006-01-1275
Measurements from a Global Navigation System in conjunction with an Inertial Measurement Unit were recently introduced in different aerial and ground vehicles as an input to control vehicle dynamics. In automobiles this approach could help to further improve braking and / or stability control systems as information like velocity over ground and side slip angle becomes available. This paper presents the technical background, validation through test results and the evaluation of potential benefits of such an “INS/GPS” setup. As a result of the extended measuring capabilities a reduction in braking distance and a more effective stability control becomes possible. The results show an excellent performance that should be exploited in future automotive applications.
Technical Paper

Integrated Chassis Management: Introduction into BMW's Approach to ICM

2006-04-03
2006-01-1219
This paper is supposed to address the BMW approach to the challenge of integrating chassis control systems and it highlights the major issues that have to be addressed. It points out possible solutions for scalable functional and hardware configurations for variable chassis control system combinations. A short outlook is given at possible functional benefits of an integrated structure. Finally, aspects such as components costs (e. g. for sensors and ECUs) as well as reactions on system failures and degradability have to be looked at.
Technical Paper

Intelligent Automotive System Services - An Emerging Design Pattern for an Advanced E/E-Architecture

2006-04-03
2006-01-1286
The paper will introduce the concept of intelligent automotive system services as an essential pattern for forthcoming Electric/Electronic (E/E) architectures. System services are infrastructure-related, having vehicle-wide functionalities with one central part (master) and optionally several peripheral parts (clients) as counterparts in every ECU. System services support the reliable operation, efficient administration and maintenance of car functions over the entire life cycle. System services constitute vehicle-wide, distributed functionalities. Therefore, a consistent, interoperable and scalable implementation and integration strategy is outlined. In addition, synergies to the standard core as well as to the AUTOSAR concept will be described.
X