Refine Your Search

Topic

Search Results

Journal Article

Additional Comparison of Iced Aerodynamic Measurements on a Swept Wing from Two Wind Tunnels

2019-06-10
2019-01-1986
Artificial ice shapes of various geometric fidelity were tested on a wing model based on the Common Research Model. Low Reynolds number tests were conducted at Wichita State University’s Walter H. Beech Memorial Wind Tunnel utilizing an 8.9% scale model, and high Reynolds number tests were conducted at ONERA’s F1 wind tunnel utilizing a 13.3% scale model. Several identical geometrically-scaled ice shapes were tested at both facilities, and the results were compared at overlapping Reynolds and Mach numbers. This was to ensure that the results and trends observed at low Reynolds number could be applied and continued to high, near-flight Reynolds number. The data from Wichita State University and ONERA F1 agreed well at matched Reynolds and Mach numbers. The lift and pitching moment curves agreed very well for most configurations.
Technical Paper

AutoDSS: A System Level KBE Tool for Vehicle Product Definition

2000-03-06
2000-01-1351
A key to shortening the design cycle is to shorten the initial or conceptual design phase. An enabling technology towards this goal is an architecture called the Design Support System (DSS), which is based on the virtual prototype concept. The DSS combines knowledge with hardware and software into a system that is a model for the design process. It produces a virtual prototype of the design and maintains an intelligent design document, which is automatically updated during the design process. A design domain dependent version for automotive design, known as “Automobile Design Support System” (AutoDSS) was developed in the CADTECH Research Lab at the University of Washington.
Technical Paper

Comparing the Whole Body Vibration Exposures across Three Truck Seats

2017-06-05
2017-01-1836
Whole-body vibration (WBV) is associated with several adverse health and safety outcomes including low-back pain (LBP) and driver fatigue. The objective of this study was to evaluate the efficacy of three commercially-available air-suspension truck seats for reducing truck drivers’ exposures to WBV. Seventeen truck drivers operating over a standardized route were recruited for this study and three commercially-available air suspension seats were evaluated. The predominant, z-axis average weighted vibration (Aw) and Vibration Dose Values (VDV) were calculated and normalized to represent eight hours of truck operation. In addition, the Seat Effective Amplitude Transmissibility (SEAT), the ratio of the seat-measured vibration divided by the floor-measured vibration, was compared across the three seats. One seat had significantly higher on-road WBV exposures whereas there were no differences across seats in off-road WBV exposures.
Technical Paper

Comparison of Measurement Methods for Evaluating Displacement of Commercial Vehicle Seats

2019-06-05
2019-01-1481
Measuring the displacements in vehicle seat suspensions and the displacements the seat has to absorb may assist vehicle seat designers in better designing seats to absorb vibrations. Low frequency seat displacement is important in seat design to identify end-stop events and higher frequency shorter displacements are also important since seat components can be optimized to absorb these smaller displacements. Displacements can be directly measured with special instruments, but it would be less complicated if simple, compact accelerometers could be used to measure the seat displacements. This paper compares accelerometer-derived displacement measurements to known displacements derived from sinusoidal physics and field measured random displacements measured with potentiometers. Using known, controlled sinusoidal displacements, three lab-based experiments were conducted to determine how well accelerometers, using double integration, could measure displacements.
Journal Article

Design Tradeoffs: The Social Costs of Vehicle Fire Protection

2012-04-16
2012-01-0985
Rational design for fire safety necessarily includes consideration of risk tradeoffs that tend to reduce one risk but may increase another. Traditional engineering design criteria can be supplemented with important factors that rely on expertise from other disciplines. Engineering analysis may be able to address reduction in fire risk due to the introduction of new technology, but may not address the social costs associated with this new technology. For example, the resultant increase in vehicle cost may prevent some people from purchasing a vehicle (impacting individuals' lives), may reduce the number of vehicles sold (impacting manufacturers), and may reduce taxes collected (impacting the government). This must be weighed against decreased risk of property damage, injury, and fatality due to fire. In this paper, the methods of benefit-cost analysis from economics were applied to make this evaluation.
Technical Paper

ESS Design Process Overview and Key Outcomes of Year Two of EcoCAR 2: Plugging in to the Future

2014-04-01
2014-01-1922
EcoCAR 2: Plugging in to the Future (EcoCAR) is North America's premier collegiate automotive engineering competition, challenging students with systems-level advanced powertrain design and integration. The three-year Advanced Vehicle Technology Competition (AVTC) series is organized by Argonne National Laboratory, headline sponsored by the U. S. Department of Energy (DOE) and General Motors (GM), and sponsored by more than 30 industry and government leaders. Fifteen university teams from across North America are challenged to reduce the environmental impact of a 2013 Chevrolet Malibu by redesigning the vehicle powertrain without compromising performance, safety, or consumer acceptability. During the three-year program, EcoCAR teams follow a real-world Vehicle Development Process (VDP) modeled after GM's own VDP. The EcoCAR 2 VDP serves as a roadmap for the engineering process of designing, building and refining advanced technology vehicles.
Technical Paper

Experimental Aerodynamic Simulation of Glaze Ice Accretion on a Swept Wing

2019-06-10
2019-01-1987
Aerodynamic assessment of icing effects on swept wings is an important component of a larger effort to improve three-dimensional icing simulation capabilities. An understanding of ice-shape geometric fidelity and Reynolds and Mach number effects on iced-wing aerodynamics is needed to guide the development and validation of ice-accretion simulation tools. To this end, wind-tunnel testing was carried out for 8.9% and 13.3% scale semispan wing models based upon the Common Research Model airplane configuration. Various levels of geometric fidelity of an artificial ice shape representing a realistic glaze-ice accretion on a swept wing were investigated. The highest fidelity artificial ice shape reproduced all of the three-dimensional features associated with the glaze ice accretion. The lowest fidelity artificial ice shapes were simple, spanwise-varying horn ice geometries intended to represent the maximum ice thickness on the wing upper surface.
Journal Article

Experimental Aerodynamic Simulation of a Scallop Ice Accretion on a Swept Wing

2019-06-10
2019-01-1984
Understanding the aerodynamic impact of swept-wing ice accretions is a crucial component of the design of modern aircraft. Computer-simulation tools are commonly used to approximate ice shapes, so the necessary level of detail or fidelity of those simulated ice shapes must be understood relative to high-fidelity representations of the ice. Previous tests were performed in the NASA Icing Research Tunnel to acquire high-fidelity ice shapes. From this database, full-span artificial ice shapes were designed and manufactured for both an 8.9%-scale and 13.3%-scale semispan wing model of the CRM65 which has been established as the full-scale baseline for this swept-wing project. These models were tested in the Walter H. Beech wind tunnel at Wichita State University and at the ONERA F1 facility, respectively. The data collected in the Wichita St.
Technical Paper

Exploring the Space of Human Body Shapes: Data-driven Synthesis under Anthropometric Control

2004-06-15
2004-01-2188
In this paper, we demonstrate a system for synthesizing high-resolution, realistic 3D human body shapes according to user-specified anthropometric parameters. We begin with a corpus of whole-body 3D laser range scans of 250 different people. For each scan, we warp a common template mesh to fit each scanned shape, thereby creating a one-to-one vertex correspondence between each of the example body shapes. Once we have a common surface representation for each example, we then use principal component analysis to reduce the data storage requirements. The final step is to relate the variation of body shape with concrete parameters, such as body circumferences, point-to-point measurements, etc. These parameters can then be used as “sliders” to synthesize new individuals with the required attributes, or to edit the attributes of scanned individuals.
Technical Paper

Improving Fuel Economy of Thermostatic Control for a Series Plugin-Hybrid Electric Vehicle Using Driver Prediction

2016-04-05
2016-01-1248
This study investigates using driver prediction to anticipate energy usage over a 160-meter look-ahead distance for a series, plug-in, hybrid-electric vehicle to improve conventional thermostatic powertrain control. Driver prediction algorithms utilize a hidden Markov model to predict route and a regression tree to predict speed over the route. Anticipated energy consumption is calculated by integrating force vectors over the look-ahead distance using the predicted incline slope and vehicle speed. Thermostatic powertrain control is improved by supplementing energy produced by the series generator with regenerative braking during events where anticipated energy consumption is negative, typically associated with declines or decelerations.
Technical Paper

Likelihood of Lumbar Spine Injuries for Far-side Occupants in Low to Moderate Speed Lateral Impacts

2014-04-01
2014-01-0494
Previous studies have shown that occupant kinematics in lateral impacts are different for near- and far-side occupants. Additionally, injuries to far-side occupants in high-speed lateral impacts have been better documented in the scientific literature; few studies have looked at low-speed far-side occupants. The purpose of this study was to determine the risk of lumbar spine injury for restrained and unrestrained far-side occupants in low- to moderate- speed lateral impacts. The NASS/CDS database was queried for far-side occupants in lateral impacts for different levels of impact severity (categorized by Delta-V): 0 to 8 km/h, 8 to 16 km/h, 16 to 24 km/h and 24 to 32 km/h. To further understand the lumbar spine injuries sustained by occupants in real-world impacts, far-side lateral impact tests with ATDs from the NHTSA Biomechanics Test Database were used to estimate lumbar loads in generic far-side sled tests.
Technical Paper

Map Matching with Travel Time Constraints

2007-04-16
2007-01-1102
Map matching determines which road a vehicle is on based on inaccurate measured locations, such as GPS points. Simple algorithms, such as nearest road matching, fail often. We introduce a new algorithm that finds a sequence of road segments which simultaneously match the measured locations and which are traversable in the time intervals associated with the measurements. The time constraint, implemented with a hidden Markov model, greatly reduces the errors made by nearest road matching. We trained and tested the new algorithm on data taken from a large pool of real drivers.
Technical Paper

Modeling of Commercial Airplanes Service Request Process Flows

2009-11-10
2009-01-3199
The repairing of commercial aircraft is a complex task. Service engineers at Boeing's Commercial Aviation Services group specialize in providing crucial repair information and technical support for its many customers. This paper details factors that influence Boeing's response time to service requests and how to improve it. Information pertaining to over 5000 service requests from 2008 and 2009 was collected. From analysis of this data set, important findings were discovered. One major finding is that between 6 and 8 percent of service requests are late because time/date stamps used in reports were created in a different time zone.
Journal Article

Modeling of Fastener Kitting Logistics for Boeing Wide Body Airplanes

2009-11-10
2009-01-3252
At Boeing’s commercial aircraft production in Everett Washington, the organization that supplies parts to the factory floor (known internally as Company 625) is revising their methods. A new process will deliver parts in kits that correspond to the installation plans used by the mechanics. Several alternative methods are under review. The authors used simulation methods to evaluate and compare these alternatives. This study focuses on the category of parts known as standard fasteners (‘standards’). Through direct observation, interviews with experts, as well as time and motion study, the process flow of the kitting operation was mapped A simulation model was created using the simulation software ARENA to examine two scenarios: the current kitting operation in the factory cribs and the proposed centralization of kitting operation in the Company 625.
Technical Paper

Parameter Estimation of the Human Ankle in the Transverse Plane during Straight Walking

2007-06-12
2007-01-2486
In order to reduce painful and injurious shear stresses for lower limb amputees, prosthetic ankle joints need to provide torsional control in the transverse plane. This paper attempts to characterize biological ankle function in the transverse plane with simple mechanical elements to assist in the design of a biomimetic prosthetic ankle joint. Motion capture data was collected from ten subjects walking in a straight trajectory to model four states of stance phase. Passive elements were chosen to model the ankle in each state. The ankle was observed to act as a quadratic torsional spring in State 1 and as linear torsional springs in States 2, 3 and 4. The results of this study should assist with the mechanical design and control of a biomimetic torsional prosthesis by suggesting a finite state control system and by providing the stiffness coefficients to be controlled for straight walking.
Technical Paper

Perceptual Biases in Spatial Judgements as a Function of Eyepoint Elevation Angle and Geometric Field of View

1994-06-01
941441
This study investigated perceptual biases in spatial judgments as a function of the computer graphics eyepoint elevation, monoscopic or stereoscopic display, and target cube location. The display for this experiments consisted of two computer-generated cubes located above a grid plane with drop lines to the display surface. The experiment task consisted of judging azimuth and elevation angles between the target and reference cubes. The results indicated that azimuth errors varied with eyepoint elevation and were maximized at the - 15 degree eyepoint, elevation errors were worse using the 75 degree eyepoint, and binocular disparity did not aid judgments of azimuth and elevation.
Technical Paper

Quasi-Isothermal Expansion Engines for Liquid Nitrogen Automotive Propulsion

1997-08-06
972649
An automotive propulsion concept is presented which utilizes liquid nitrogen as the working fluid for an open Rankine cycle. Ambient heat exchangers are used to power an engine that is configured to maximize heat transfer during the expansion stroke. If sufficient heat input during the expansion process can be realized then this cryogenic propulsive system would provide greater automotive ranges and lower operating costs than those of electric vehicles currently being considered for mass production. The feasibility of meeting this engineering challenge has been evaluated and several means of achieving quasi-isothermal expansion are discussed.
Technical Paper

Route Prediction from Trip Observations

2008-04-14
2008-01-0201
This paper develops and tests algorithms for predicting the end-to-end route of a vehicle based on GPS observations of the vehicle's past trips. We show that a large portion a typical driver's trips are repeated. Our algorithms exploit this fact for prediction by matching the first part of a driver's current trip with one of the set of previously observed trips. Rather than predicting upcoming road segments, our focus is on making long term predictions of the route. We evaluate our algorithms using a large corpus of real world GPS driving data acquired from observing over 250 drivers for an average of 15.1 days per subject. Our results show how often and how accurately we can predict a driver's route as a function of the distance already driven.
Technical Paper

Simulation of Advanced Regenerative Braking Strategies in a Series Plug-in Hybrid Electric Vehicle

2017-10-08
2017-01-2466
Regenerative braking is an important factor in improving hybrid electric vehicle efficiency. This paper proposes a new regenerative braking strategy that activates preemptively during a distracted driving scenario, before service brakes are utilized. The strategy uses onboard advanced driver assistance systems, such as forward facing radar, to detect when an object is approaching fast enough to enable regenerative braking in response. The proposed strategy is simulated on a full-vehicle model of a series plug-in hybrid electric vehicle. A driver model is developed to mimic the behavior of a distracted driver through delayed response time to the changing speed of a lead vehicle. Multiple trials are simulated using different combinations of existing regenerative braking strategies along with the proposed strategy. Results show that a preventative regenerative braking control strategy can recuperate significant amounts of energy while also improving vehicle safety.
Technical Paper

Structuring a Hybrid Vehicle Supervisory Control System Simulink Model for Simpler Version Control with Multiple Software Developers

2014-04-01
2014-01-1923
This paper details the development process and model architecture used in the University of Washington's EcoCAR 2 hybrid supervisory controller. The EcoCAR 2 project challenges 15 universities across North America to create a hybrid vehicle that most effectively minimizes emissions and fuel consumption while still maintaining consumer acceptability. The supervisory controller for the University of Washington was designed to distribute torque to the various electric and combustion drive systems on a parallel though the road plug-in hybrid electric vehicle using Simulink and Stateflow. The graphical interface of Simulink offers some distinct advantages over text-based programming languages. However, there are also significant challenges posed by the software, particularly when several controls engineers are working in parallel on a large model with some type of version control.
X