Refine Your Search

Topic

Author

Search Results

Journal Article

A New Adaptive Controller for Performance Improvement of Automotive Suspension Systems with MR Dampers

2014-04-01
2014-01-0052
A control algorithm is developed for active/semi-active suspensions which can provide more comfort and better handling simultaneously. A weighting parameter is tuned online which is derived from two components - slow and fast adaptation to assign weights to comfort and handling. After establishing through simulations that the proposed adaptive control algorithm can demonstrate a performance better than some controllers in prior-art, it is implemented on an actual vehicle (Cadillac STS) which is equipped with MR dampers and several sensors. The vehicle is tested on smooth and rough roads and over speed bumps.
Journal Article

A New Control Strategy for Electric Power Steering on Low Friction Roads

2014-04-01
2014-01-0083
In vehicles equipped with conventional Electric Power Steering (EPS) systems, the steering effort felt by the driver can be unreasonably low when driving on slippery roads. This may lead inexperienced drivers to steer more than what is required in a turn and risk losing control of the vehicle. Thus, it is sensible for tire-road friction to be accounted for in the design of future EPS systems. This paper describes the design of an auxiliary EPS controller that manipulates torque delivery of current EPS systems by supplying its motor with a compensation current controlled by a fuzzy logic algorithm that considers tire-road friction among other factors. Moreover, a steering system model, a nonlinear vehicle dynamics model and a Dugoff tire model are developed in MATLAB/Simulink. Physical testing is conducted to validate the virtual model and confirm that steering torque decreases considerably on low friction roads.
Technical Paper

A Review Study of Methods for Lithium-ion Battery Health Monitoring and Remaining Life Estimation in Hybrid Electric Vehicles

2012-04-16
2012-01-0125
Due to the high power and energy density and also relative safety, lithium ion batteries are receiving increasing acceptability in industrial applications especially in transportation systems with electric traction such as electric vehicles and hybrid electric vehicles. In this regard, to ensure performance reliability, accurate modeling of calendar life of such batteries is a necessity. In fact, potential failure of Li-ion battery packs remains a barrier to commercialization. Battery pack life is a critical feature to warranty and maintenance planning for hybrid vehicles, and will require adaptive control systems to account for the loss in vehicle range, and loss in battery charge and discharge efficiency. Failure not only results in large replacement costs, but also potential safety concerns such as overheating or short circuiting which may lead to fires.
Technical Paper

An Active Control Device Based on Differential Braking for Articulated Steer Vehicles

2006-10-31
2006-01-3568
In this study, application of differential braking strategy to remove the oscillatory instability or snaking behavior of an articulated steer vehicle is presented. First, a linearized model of the vehicle is described that is used to represent the equations of motion in the state-space form. Then, this model is utilized for designing a sliding mode controller to adjust the differential braking on the rear axle to stabilize the vehicle during the snaking. The performance of the resulting active control system is evaluated in different driving conditions by using the linearized model. Finally, the control system is incorporated into a virtual prototype of the vehicle in ADAMS, and its operation is examined. The results from the linear model analysis and simulations in ADAMS are reasonably consistent.
Technical Paper

An Evaluation of the Fatigue Performance of Automotive Steels

1971-02-01
710597
A rapid inexpensive evaluation and comparison of the cyclic properties of three steels used in the automotive industry is presented. This evaluation ranges from the endurance limit through the transition life and low cycle regions to the monotonic results. Smooth and notched specimens, tested in strain control and load control, respectively, provide data that are used to indicate notch sensitivity and size effects, cyclic strength and ductility, and cyclic deformation response. The effect of overloads on fatigue damage is given and prestrained smooth specimens demonstrate the possible effect of a few large plastic strain cycles on fatigue resistance. Overloaded notched specimens indicate reductions in life due to both large plastic strain cycles and the induced tensile residual stress. These data are suitable for direct insertion into the design process and also provide a broad base for continuing studies of cyclic behavior.
Technical Paper

Application of Damage Models in Bending and Hydroforming of Aluminum Alloy Tube

2004-03-08
2004-01-0835
This paper examines the application of damage models in tube bending and subsequent hydroforming of AlMg3.5Mn aluminum alloy tubes. An in-house Gurson-based damage model, incorporated within LS-DYNA, has been used for the simulations. The applied damage model contains several void nucleation and growth parameters that must be determined for each material. A simpler straight tube hydroforming process was considered first to check the damage parameters and predicted ductility. Then the model was applied to a sequence of bending and hydroforming. The damage history from pre-bending was mapped to the hydroforming stage, to allow prediction of the overall ductility. The applied forming parameters in the simulation were based on data extracted during the experimental tests. Finally, the numerical results were compared to the experimental data.
Technical Paper

Coatings on Resistance Welding Electrodes to Extend Life

2006-04-03
2006-01-0093
TiCP/Ni coating has been deposited onto the electrodes by electro-spark deposition to improve electrode life during resistance welding of Zn-coated steels. However, welding results revealed that molten Zn penetrates into coating through the cracks and then reacts with substrate copper alloy to form brasses. In the present work, laser treatment was performed on the TiCP/Ni coated electrodes to eliminate cracks formed in the as-deposited TiCP/Ni coating. In addition, a multi-electro-spark deposition of Ni, TiCP/Ni and Ni has also been carried out to improve coating quality. On the other hand, a TiB2 coating was also investigated. those coatings were characterized by electro-microscopy, energy-dispersive X-ray analysis, X-ray diffraction and micro-hardness tests. The results showed that cracks within the as-deposited TiCP/Ni coating could be eliminated with the use of laser treatment or a multi-layer deposition process.
Technical Paper

Compatibility of Rupp’s Structural Stress Method for Fatigue Life Prediction of Self-Piercing Rivets

2023-04-11
2023-01-0802
The Self-Piercing Rivet (SPR) is an effective method for joining aluminum sheets and dissimilar materials. The durability assessment of SPR joints is essential for the optimum design of the automotive body-in-white structure. Fatigue analysis is required for any structural system subject to cyclic loading where durability assessment is required. While there is no established fatigue life prediction model for SPR joints, Rupp’s model is a well-established fatigue life prediction method intended for resistance spot welds. Rupp’s model has been the automotive industry’s choice for fatigue life estimation due to its computational efficiency and ability to capture various loading conditions. The purpose of this study is to investigate the compatibility of Rupp’s model with SPR joints. Load-control fatigue testing was conducted on cross-tension SPR joints of aluminum sheets (Al 6016) with dissimilar thicknesses and SPR joints of dissimilar materials (Al 6016 to DX54D steel).
Journal Article

Constitutive, Formability, and Fracture Characterization of 3rd Gen AHSS with an Ultimate Tensile Strength of 1180 MPa

2021-04-06
2021-01-0308
The superior formability and local ductility of the emerging class of third generation of advanced high-strength steels (3rd Gen AHSS) compared to their conventional counterparts of the same strength level offer significant advantages for automotive lightweighting and enhanced crash performance. Nevertheless, studies on the material behavior of 3rd Gen AHSS have been limited and there is some uncertainty surrounding the applicability of developed methodologies for conventional dual-phase (DP) steels to this new class of AHSS. The present paper provides a comprehensive study on the quasi-static and dynamic constitutive behavior, formability characterization and prediction, and the fracture behavior of two commercial 3rd Gen AHSS with an ultimate strength of 1180 MPa that will be contrasted with a conventional DP1180. The hardening response to large strain levels was determined experimentally using tensile and shear tests and then validated with 3-D simulations of tensile tests.
Journal Article

Cooperative Least Square Parameter Identification by Consensus within the Network of Autonomous Vehicles

2016-04-05
2016-01-0149
In this paper, a consensus framework for cooperative parameter estimation within the vehicular network is presented. It is assumed that each vehicle is equipped with a dedicated short range communication (DSRC) device and connected to other vehicles. The improvement achieved by the consensus for parameter estimation in presence of sensor’s noise is studied, and the effects of network nodes and edges on the consensus performance is discussed. Finally, the simulation results of the introduced cooperative estimation algorithm for estimation of the unknown parameter of road condition is presented. It is shown that due to the faster dynamic of network communication, single agents’ estimation converges to the least square approximation of the unknown parameter properly.
Technical Paper

Crack Initiation and Propagation Fatigue Life Prediction for an A36 Steel Welded Plate Specimen

2019-04-02
2019-01-0538
Fatigue crack initiation and propagation models predict the fatigue life of welded "T" specimens tested by the Fatigue Design and Evaluation (FDE) Committee of SAE under constant and variable amplitude load histories. The crack propagation equations stipulated by British Standard BS-7910 have been incorporated in a material memory model for cyclic deformation. The simulations begin with the crack initiation model and show how it is used to account for cyclic mean stress relaxation and the effects of periodic overloads. After the cracks initiate the BS-7910 model is applied to predict the crack advance due to either constant or variable amplitude histories. Simulation results correspond to the experimental results with good accuracy.
Technical Paper

Crack Initiation and Propagation Predictions for ManTen and RQC-100 Steel Keyhole Notched Specimens Tested by the Fatigue Design & Evaluation Committee of SAE

2020-04-14
2020-01-0191
1 Crack initiation and propagation test data gathered during tests on Keyhole notched samples is used to evaluate a fatigue life prediction technique. Materials tested include a lower strength ManTen steel and a higher strength Boron steel, RQC-100, both tested with constant and variable amplitude histories. Initiation fatigue life is predicted using the usual method of plasticity correction at the notch followed by a Palmgren-Miner summation of damage with mean stress correction. The emphasis of the study is on simulating the crack propagation results. For that phase discretetize da/dN vs ΔK lines and thresholds for negative R ratios, are used specifically to help predict the propagation for one of the VA histories that had a significant negative mean. The open source crack propagation simulation program applies a material memory model to determine the crack advance on a reversal by reversal basis.
Technical Paper

Damage Characterization and Damage Percolation Modelling in Aluminum Alloy Sheet

2000-03-06
2000-01-0773
Tessellation methods have been applied to characterize second phase particle fields and the degree of clustering present in AA 5754 and 5182 automotive sheet alloys. A model of damage development within these materials has been developed using a damage percolation approach based on measured particle distributions. The model accepts tessellated particle fields in order to capture the spatial distributions of particles, as well as nearest neighbour and cluster parameter data. The model demonstrates how damage initiates and percolates within particle clusters in a stable fashion for the majority of the deformation history. Macro-cracking leading to final failure occurs as a chain reaction with catastrophic void linkage triggered once linkage beyond three or more clusters of voids takes place.
Technical Paper

Damage and Formability of AKDQ and High Strength DP600 Steel Tubes

2005-04-11
2005-01-0092
Using standard tensile testing methods, the material properties of AKDQ and DP600 steels tubes along the axial direction were determined. A novel in-situ optical strain mapping system ARAMIS® was utilized to evaluate the strain distribution during tensile testing along the axial direction. Microstructural and damage characterization was carried out using microscopy and image analysis techniques to compare the damage evolution and formability of both materials. Failure in both steels was observed to occur via a ductile failure mode. AKDQ was found to be the more formable material as it can achieve higher strains, total elongations and thinning prior to failure than the higher strength DP600.
Technical Paper

Dent Resistance of Medium Scale Aluminum Structural Assemblies

2001-03-05
2001-01-0757
This work outlines the evaluation of static and dynamic dent resistance of medium scale structural assemblies fabricated using AA6111 and AA5754. The assemblies fabricated attempt to mimic common automotive hood designs allowing for a parametric study of the support spacing, sheet thickness and panel curvature. Closure panels of AA6111, of two thicknesses (0.8, and 0.9mm), are bonded to re-usable inner panels fabricated using AA5754 to form the structural assemblies tested. While normal practice would use the same alloy for both the inner and the outer, in the current work, AA5754 was adopted for ease of welding. Numerical simulations were performed using LS DYNA. A comparison of experimental and numerically simulated results is presented. The study attempts to establish an understanding of the relationship between structural support conditions and resulting dent depths for both static and dynamic loading conditions.
Journal Article

Derivation of Effective Strain-Life Data, Crack Closure Parameters and Effective Crack Growth Data from Smooth Specimen Fatigue Tests

2013-04-08
2013-01-1779
Small crack growth from notches under variable amplitude loading requires that crack opening stress be followed on a cycle by cycle basis and taken into account in making fatigue life predictions. The use of constant amplitude fatigue life data that ignores changes in crack opening stress due to high stress overloads in variable amplitude fatigue leads to non-conservative fatigue life predictions. Similarly fatigue life predictions based on small crack growth calculations for cracks growing from flaws in notches are non-conservative when constant amplitude crack growth data are used. These non-conservative predictions have, in both cases, been shown to be due to severe reductions in fatigue crack closure arising from large (overload or underload) cycles in a typical service load history.
Technical Paper

Design and Evaluation of an in-Plane Shear Test for Fracture Characterization of High Ductility Metals

2024-04-09
2024-01-2858
Fracture characterization of automotive metals under simple shear deformation is critical for the calibration of advanced fracture models employed in forming and crash simulations. In-plane shear fracture tests of high ductility materials have proved challenging since the sample edge fails first in uniaxial tension before the fracture limit in shear is reached at the center of the gage region. Although through-thickness machining is undesirable, it appears required to promote higher strains within the shear zone. The present study seeks to adapt existing in-plane shear geometries, which have otherwise been successful for many automotive materials, to have a local shear zone with a reduced thickness. It is demonstrated that a novel shear zone with a pocket resembling a “peanut” can promote shear fracture within the shear zone while reducing the risk for edge fracture. An emphasis was placed upon machinability and surface quality for the design of the pocket in the shear zone.
Technical Paper

Design of a Test Geometry to Characterize Sheared Edge Fracture in a Uniaxial Bending Mode

2023-04-11
2023-01-0730
The characterization of sheet metals under in-plane uniaxial bending is challenging due to the aspect ratios involved that can cause buckling. Anti-buckling plates can be employed but require compensation for contact pressure and friction effects. Recently, a novel in-plane bending fixture was developed to allow for unconstrained sample rotation that does not require an anti-buckling device. The objective of the present study is to design the sample geometry for sheared edge fracture characterization under in-plane bending along with a methodology to resolve the strains exactly at the edge. A series of virtual experiments were conducted for a 1.0 mm thick model material with different hardening rates to identify the influence of gage section length, height, and the radius of the transition region on the bend ratio and potential for buckling. Two specimen geometries are proposed with one suited for constitutive characterization and the other for sheared edge fracture.
Technical Paper

Dynamic Analyses of Different Concept Car Suspension System Layouts

2009-04-20
2009-01-0360
Ride performance characteristics of a road vehicle involving different suspension system layouts are investigated. The suspension layouts consist of conventional rectangular 4-wheel, novel diamond-shaped 4-wheel, triangular 3-wheel and inverse-triangular 3-wheel. A generalized full-vehicle model integrating different suspension system layouts is formulated. The fundamental suspension properties are compared in terms of bounce-, roll- and pitch-mode. The ride dynamic responses and power consumption characteristics are explored under two measured road roughness excitations and a range of vehicle speeds. The results demonstrate that the novel diamond-shaped suspension system layout could yield significantly enhanced vehicle ride performance in an energy-saving manner.
Technical Paper

Effect of Edge Finish on Fatigue Behavior of Thin Non-oriented Electrical Steel Sheets

2023-04-11
2023-01-0803
Strict environmental regulations are driving the automotive industry toward electric vehicles as they offer zero emissions. A key component in electric vehicles is the electric motor, where the stator and rotor are manufactured from stacks of thin electrical steel sheets. The electrical steel sheets can be cut in different ways, and the cutting methods may significantly affect the fatigue strength of the component. It is important to understand the effect of the cutting processes on the fatigue properties of electrical steel to ensure there is no premature failure of the electric motor resulting from an improper cutting process. This investigation compared the effect of three different edge preparation methods (stamping, CNC machining, and waterjet cutting) on the fatigue performance of 0.27mm thick electrical steel sheets. To investigate the effect of the edge finish on fatigue behavior, surface roughness was measured for these different samples.
X