Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Case Study for Life Cycle Assessment (LCA) as an Energy Decision Making Tool: The Production of Fuel Ethanol from Various Feedstocks

1998-11-30
982205
Life Cycle Analysis (LCA) considers the key environmental impacts for the entire life cycle of alternative products or processes in order to select the best alternative. An ideal LCA would be an expensive and time consuming process because any product or process typically involves many interacting systems and a considerable amount of data must be analysed for each system. Practical LCA methods approximate the results of an ideal analysis by setting limited analysis boundaries and by accepting some uncertainty in the data values for the systems considered. However, there is no consensus in the LCA field on the correct method of selecting boundaries or on the treatment of data set uncertainty. This paper demonstrates a new method of selecting system boundaries for LCA studies and presents a brief discussion on applying Monte Carlo Analysis to treat the uncertainty questions in LCA.
Technical Paper

A Computational Investigation into the Effects of Spray Targeting, Bowl Geometry and Swirl Ratio for Low-Temperature Combustion in a Heavy-Duty Diesel Engine

2007-04-16
2007-01-0119
A computational study was performed to evaluate the effects of bowl geometry, fuel spray targeting and swirl ratio under highly diluted, low-temperature combustion conditions in a heavy-duty diesel engine. This study is used to examine aspects of low-temperature combustion that are affected by mixing processes and offers insight into the effect these processes have on emissions formation and oxidation. The foundation for this exploratory study stems from a large data set which was generated using a genetic algorithm optimization methodology. The main results suggest that an optimal combination of spray targeting, swirl ratio and bowl geometry exist to simultaneously minimize emissions formation and improve soot and CO oxidation rates. Spray targeting was found to have a significant impact on the emissions and fuel consumption performance, and was furthermore found to be the most influential design parameter explored in this study.
Technical Paper

A Multi-Zone Model for Prediction of HCCI Combustion and Emissions

2000-03-06
2000-01-0327
Homogeneous Charge Compression Ignition (HCCI) combustion is a process dominated by chemical kinetics of the fuel-air mixture. The hottest part of the mixture ignites first, and compresses the rest of the charge, which then ignites after a short time lag. Crevices and boundary layers generally remain too cold to react, and result in substantial hydrocarbon and carbon monoxide emissions. Turbulence has little effect on HCCI combustion, and may be most important as a factor in determining temperature gradients and boundary layer thickness inside the cylinder. The importance of thermal gradients inside the cylinder makes it necessary to use an integrated fluid mechanics-chemical kinetics code for accurate predictions of HCCI combustion. However, the use of a fluid mechanics code with detailed chemical kinetics is too computationally intensive for today's computers.
Technical Paper

A Novel Model for Computing the Trapping Efficiency and Residual Gas Fraction Validated with an Innovative Technique for Measuring the Trapping Efficiency

2008-09-09
2008-32-0003
The paper describes a novel method for calculating the residual gas fraction and the trapping efficiency in a 2 stroke engine. Assuming one dimensional compressible flow through the inlet and exhaust ports, the method estimates the instantaneous mass flowing in and out from the combustion chamber; later the residual gas fraction and trapping efficiency are estimated combining together the perfect displacement and perfect mixing scavenging models. It is assumed that when the intake port opens, the fresh mixture is pushing out the burned charge without any mixing and after a multiple of the time needed for the largest eddy to perform one rotation, the two gasses are instantly mixed up together and expelled. The result is a very simple algorithm that does not require much computational time and is able to estimate with high level of precision the trapping efficiency and the residual gas fraction in 2 stroke engines.
Technical Paper

A Numerical Study on the Burning Velocity of a Spherical, Premixed Methane-Air Flame

2005-04-11
2005-01-1124
As a first step toward better understanding of the effects of flame stretch on combustion rate in SI engines, the burning velocity of a premixed, spherical, laminar methane-air flame propagating freely at standard temperature and pressure was investigated. The underlying un-stretched burning velocity was computed using CHEMKIN 3.7 with GRI mechanism, while the Lewis number and subsequently the Markstein length were deduced theoretically. The burning velocity of the freely growing flame ball was calculated from the un-stretched burning velocity with curvature and stretch effects accounted via the theoretically deduced Markstein length. For the positive Markstein length methane-air flame, flame stretching reduces the burning velocity. Therefore, the burning velocity of a spark-ignited flame starts with a value lower than, and increases asymptotically to, the underlying un-stretched burning velocity as the flame grows.
Technical Paper

A Real Time NOx Model for Conventional and Partially Premixed Diesel Combustion

2006-04-03
2006-01-0195
In this paper a fast NOx model is presented which can be used for engine optimization, aftertreatment control or virtual mapping. A cylinder pressure trace is required as input data. High calculation speed is obtained by using table interpolation to calculate equilibrium temperatures and species concentrations. Test data from a single-cylinder engine and from a complete six-cylinder engine have been used for calibration and validation of the model. The model produces results of good agreement with emission measurements using approximately 50 combustion product zones and a calculation time of one second per engine cycle. Different compression ratios, EGR rates, injection timing, inlet pressures etc. were used in the validation tests.
Technical Paper

A Simple Approach to Studying the Relation between Fuel Rate Heat Release Rate and NO Formation in Diesel Engines

1999-10-25
1999-01-3548
Modern diesel engine injection systems are largely computer controlled. This opens the door for tailoring the fuel rate. Rate shaping in combination with increased injection pressure and nozzle design will play an important role in the efforts to maintain the superiority of the diesel engine in terms of fuel economy while meeting future demands on emissions. This approach to studying the potential of rate shaping in order to reduce NO formation is based on three sub-models. The first model calculates the fuel rate by using standard expressions for calculating the areas of the dimensioning flow paths in the nozzle and the corresponding discharge coefficients. In the second sub-model the heat release rate is described as a function of available fuel energy, i.e. fuel mass, in the cylinder. The third submodel is the multizone combustion model that calculates NO for a given heat release rate under assumed air /fuel ratios.
Technical Paper

A Study of a Glow Plug Ignition Engine by Chemiluminescence Images

2007-07-23
2007-01-1884
An experimental study of a glow plug engine combustion process has been performed by applying chemiluminescence imaging. The major intent was to understand what kind of combustion is present in a glow plug engine and how the combustion process behaves in a small volume and at high engine speed. To achieve this, images of natural emitted light were taken and filters were applied for isolating the formaldehyde and hydroxyl species. Images were taken in a model airplane engine, 4.11 cm3, modified for optical access. The pictures were acquired using a high speed camera capable of taking one photo every second or fourth crank angle degree, and consequently visualizing the progress of the combustion process. The images were taken with the same operating condition at two different engine speeds: 9600 and 13400 rpm. A mixture of 65% methanol, 20% nitromethane and 15% lubricant was used as fuel.
Technical Paper

A Study of the Homogeneous Charge Compression Ignition Combustion Process by Chemiluminescence Imaging

1999-10-25
1999-01-3680
An experimental study of the Homogeneous Charge Compression Ignition (HCCI) combustion process has been conducted by using chemiluminescence imaging. The major intent was to characterize the flame structure and its transient behavior. To achieve this, time resolved images of the naturally emitted light were taken. Emitted light was studied by recording its spectral content and applying different filters to isolate species like OH and CH. Imaging was enabled by a truck-sized engine modified for optical access. An intensified digital camera was used for the imaging. Some imaging was done using a streak-camera, capable of taking eight arbitrarily spaced pictures during a single cycle, thus visualizing the progress of the combustion process. All imaging was done with similar operating conditions and a mixture of n-heptane and iso-octane was used as fuel. Some 20 crank angles before Top Dead Center (TDC), cool flames were found to exist.
Technical Paper

A Theoretical Study of the Potential of NOx Reduction by Fuel Rate Shaping in a DI Diesel Engine

2000-10-16
2000-01-2935
In this paper, a theoretical study is presented where fuel rate shaping is analyzed in combination with EGR as a method for reducing NOx formation. The analytical tools used include an empirically based model to convert fuel rate to heat release rate, and a zero dimensional multizone combustion model to calculate combustion products, local flame temperatures and NOx emissions at a given heat release rate. The multizone model, which has been presented earlier, includes flame radiation and convective heat losses. Several geometrical shapes of the fuel rate are tested for different combustion timings and EGR rates. It is found that the fuel rate giving the lowest NOx formation varies with the injection timing. In order to lower the NOx emissions at normal and advanced injection timings, the fuel rate should have a rather long duration, and start at its maximum level followed by a slow decay.
Technical Paper

A Thermal Analysis of Active-flow Control on Diesel Engine Aftertreatment

2004-10-25
2004-01-3020
One-dimensional transient modeling techniques are adapted to analyze the thermal behavior of lean-burn after-treatment systems when active flow control schemes are applied. The active control schemes include parallel alternating flow, partial restricting flow, and periodic flow reversal (FR) that are found to be especially effective to treat engine exhausts that are difficult to cope with conventional passive flow converters. To diesel particulate filters (DPF), lean NOx traps (LNT), and oxidation converters (OC), the combined use of active flow control schemes are identified to be capable of shifting the exhaust gas temperature, flow rate, and oxygen concentration to more favorable windows for the filtration, conversion, and regeneration processes. Comparison analyses are made between active flow control and passive flow control schemes in investigating the influences of gas flow, heat transfer, chemical reaction, oxygen concentration, and converter properties.
Technical Paper

A Transient Hydrostatic Dynamometer for Testing Single-Cylinder Prototypes of Multi-Cylinder Engines

2002-03-04
2002-01-0616
A new dynamometer system has been developed to improve the accuracy of tests that are run with a single cylinder version of a multi-cylinder engine. The dynamometer control system calculates the inertial torque and combustion torque that would normally be generated in a multi-cylinder engine. The system then applies the torque from the missing cylinders of the engine with the dynamometer. A unique high bandwidth hydraulic system is utilized to accurately apply these torque pulses. This allows the single-cylinder engine to have the identical instantaneous speed trajectory as the multi-cylinder engine, to test the single-cylinder engine at all engine speeds including very low speed operation, and to now do transient speed and load testing. Not only will this dramatically extend the capabilities of current single-cylinder engine test systems, but may open up new areas of research due to its transient testing capabilities.
Technical Paper

A Visual Investigation of CFD-Predicted In-Cylinder Mechanisms That Control First- and Second-Stage Ignition in Diesel Jets

2019-04-02
2019-01-0543
The long-term goal of this work is to develop a conceptual model for multiple injections of diesel jets. The current work contributes to that effort by performing a detailed modeling investigation into mechanisms that are predicted to control 1st and 2nd stage ignition in single-pulse diesel (n-dodecane) jets under different conditions. One condition produces a jet with negative ignition dwell that is dominated by mixing-controlled heat release, and the other, a jet with positive ignition dwell and dominated by premixed heat release. During 1st stage ignition, fuel is predicted to burn similarly under both conditions; far upstream, gases at the radial-edge of the jet, where gas temperatures are hotter, partially react and reactions continue as gases flow downstream. Once beyond the point of complete fuel evaporation, near-axis gases are no longer cooled by the evaporation process and 1st stage ignition transitions to 2nd stage ignition.
Technical Paper

A Well-to-Wheel Comparison of Several Powertrain Technologies

2003-03-03
2003-01-0081
In order to evaluate the potential of several powertrain configurations, a well-to-wheel analysis is performed. Specifically, downsizing / supercharging and variable valve timing is examined and compared against other alternative vehicle concepts. In order to have a fair comparison, each powertrain configuration was added to a base vehicle, such that each vehicle had the same range, the same physical characteristics and similar performance. Upstream energy use and greenhouse gases were calculated with GREET 1.5a and the downstream energy use and greenhouse gases with ADVISOR 3.2. By downsizing / supercharging and adding variable valve timing, a spark ignition internal combustion engine can have comparable downstream overall efficiency, energy use, and greenhouse gas emissions, to a Diesel internal combustion engine.
Technical Paper

Actuator Comparison for Closed Loop Control of HCCIC Combustion Timing

2009-04-20
2009-01-1135
Homogeneous Charge Compression Ignition (HCCI) is an emerging combustion technology due to its increased efficiency and decreased NOx emissions. One of the most challenging aspects of HCCI is the regulation of the combustion timing. Unlike conventional combustion modes there is no direct control over the start of combustion. Autoignition timing is a function of the temperature, pressure and composition of the mixture, so to adjust the combustion timing of HCCI changes have to be made to these. Both variable valve timing and variable fuel octane number are effective inputs to achieve cycle-to-cycle combustion control of HCCI combustion timing. The application of these control methods are investigated in this paper. A one-cylinder Ricardo engine is fitted with a 4-valve spark ignition cylinder head equipped with camshaft phasers. These phasers independently adjust both the intake and exhaust camshaft phasing.
Technical Paper

An Air Hybrid for High Power Absorption and Discharge

2005-05-11
2005-01-2137
An air hybrid is a vehicle with an ICE modified to also work as an air compressor and air motor. The engine is connected to two air reservoirs, normally the atmosphere and a high pressure tank. The main benefit of such a system is the possibility to make use of the kinetic energy of the vehicle otherwise lost when braking. The main difference between the air hybrid developed in this paper and earlier air hybrid concepts is the introduction of a pressure tank that substitutes the atmosphere as supplier of low air pressure. By this modification, a very high torque can be achieved in compressor mode as well as in air motor mode. A model of an air hybrid with two air tanks was created using the engine simulation code GT-Power. The results from the simulations were combined with a driving cycle to estimate the reduction in fuel consumption.
Technical Paper

An Experimental Investigation of In-Cylinder Processes Under Dual-Injection Conditions in a DI Diesel Engine

2004-06-08
2004-01-1843
Fuel-injection schedules that use two injection events per cycle (“dual-injection” approaches) have the potential to simultaneously attenuate engine-out soot and NOx emissions. The extent to which these benefits are due to enhanced mixing, low-temperature combustion modes, altered combustion phasing, or other factors is not fully understood. A traditional single-injection, an early-injection-only, and two dual-injection cases are studied using a suite of imaging diagnostics including spray visualization, natural luminosity imaging, and planar laser-induced fluorescence (PLIF) imaging of nitric oxide (NO). These data, coupled with heat-release and efficiency analyses, are used to enhance understanding of the in-cylinder processes that lead to the observed emissions reductions.
Technical Paper

Application of A Multiple-Step Phenomenological Soot Model to HSDI Diesel Multiple Injection Modeling

2005-04-11
2005-01-0924
Multiple injection strategies have been revealed as an efficient means to reduce diesel engine NOx and soot emissions simultaneously, while maintaining or improving its thermal efficiency. Empirical soot models widely adopted in engine simulations have not been adequately validated to predict soot formation with multiple injections. In this work, a multiple-step phenomenological (MSP) soot model that includes particle inception, surface growth, oxidation, and particle coagulation was revised to better describe the physical processes of soot formation in diesel combustion. It was found that the revised MSP model successfully reproduces measured soot emission dependence on the start-of-injection timing, while the two-step empirical and the original MSP soot models were less accurate. The revised MSP model also predicted reasonable soot and intermediate species spatial profiles within the combustion chamber.
Technical Paper

Application of a Novel White Laser Sensor to an HCCI Engine

2006-04-03
2006-01-1200
A laser-based sensor has been developed which generates short multicolored pulses for use with absorption spectroscopy techniques for the collection of thermodynamic information in an HCCI engine. Our sensor is based on supercontinuum generation which is accomplished by coupling a short-duration, high energy laser pulse (the pump) into fiber optics where colors other than the pump are generated through various nonlinear phenomena. The resulting “white pulse” is then stretched out in time by dispersive media (e.g., another fiber) to a time scale which can be collected by a high speed detector and oscilloscope. Although other multicolored (wavelength agile) laser based techniques generated by scanning mirrors or gratings have been applied to HCCI combustion [1], our supercontinuum approach offers a broad range of wavelengths with both high spectral and high temporal resolution from a source with no moving parts.
Technical Paper

Assessment of Diesel Engine Size-Scaling Relationships

2007-04-16
2007-01-0127
Engine development is both time consuming and economically straining. Therefore, efforts are being made to optimize the research and development process for new engine technologies. The ability to apply information gained by studying an engine of one size/application to an engine of a completely different size/application would offer savings in both time and money in engine development. In this work, a computational study of diesel engine size-scaling relationships was performed to explore engine scaling parameters and the fundamental engine operating components that should be included in valid scaling arguments. Two scaling arguments were derived and tested: a simple, equal spray penetration scaling model and an extended, equal lift-off length scaling model. The simple scaling model is based on an equation for the conservation of mass and an equation for spray tip penetration developed by Hiroyasu et al. [1].
X