Refine Your Search

Topic

Author

Search Results

Technical Paper

A Numerical Study of Cavitating Flow Through Various Nozzle Shapes

1997-05-01
971597
The flow through diesel fuel injector nozzles is important because of the effects on the spray and the atomization process. Modeling this nozzle flow is complicated by the presence of cavitation inside the nozzles. This investigation uses a two-dimensional, two-phase, transient model of cavitating nozzle flow to observe the individual effects of several nozzle parameters. The injection pressure is varied, as well as several geometric parameters. Results are presented for a range of rounded inlets, from r/D of 1/40 to 1/4. Similarly, results for a range of L/D from 2 to 8 are presented. Finally, the angle of the corner is varied from 50° to 150°. An axisymmetric injector tip is also simulated in order to observe the effects of upstream geometry on the nozzle flow. The injector tip calculations show that the upstream geometry has a small influence on the nozzle flow. The results demonstrate the model's ability to predict cavitating nozzle flow in several different geometries.
Technical Paper

A Study on Automatic Transmission System Optimization Using a HMMWV Dynamic Powertrain System Model

1999-03-01
1999-01-0977
This Paper introduces a modular, flexible and user-friendly dynamic powertrain model of the US Army's High Mobility Multi-Wheeled Vehicle (HMMWV). It includes the DDC 6.5L diesel engine, Hydra-matic 4L80-E automatic transmission, Torsen differentials, transfer case, and flexible drive and axle shafts. This model is used in a case study on transmission optimization design to demonstrate an application of the model. This study shows how combined optimization of the transmission hardware (clutch capacity) and control strategy (shift time) can be explored, and how the models can help the designer understand dynamic interactions as well as provide useful design guidance early in the system design phase.
Technical Paper

A Study on the Effects of Fuel Viscosity and Nozzle Geometry on High Injection Pressure Diesel Spray Characteristics

1997-02-24
970353
The objective of this study was to investigate the effects of fuel viscosity and the effects of nozzle inlet configuration on the characteristics of high injection pressure sprays. Three different viscosity fuels were used to reveal the effects of viscosity on the spray characteristics. The effects of nozzle inlet configuration on spray characteristics were studied using two mini-sac six-hole nozzles with different inlet configurations. A common rail injection system was used to introduce the spray at 90 MPa injection pressure into a constant volume chamber pressurized with argon gas. The information on high pressure transient sprays was captured by a high speed movie camera synchronized with a pulsed copper vapor laser. The images were analyzed to obtain the spray characteristics which include spray tip penetration, spray cone angle at two different regions, and overall spray Sauter Mean Diameter (SMD).
Technical Paper

A Transient Heat Transfer System for Research Engines

2007-04-16
2007-01-0975
An ongoing goal of the Powertrain Control Research Laboratory (PCRL) at the University of Wisconsin-Madison has been to expand and improve the ability of the single cylinder internal combustion research engine to represent its multi-cylinder engine counterpart. To date, the PCRL single cylinder engine test system is able to replicate both the rotational dynamics (SAE #2004-01-0305) and intake manifold dynamics (SAE #2006-01-1074) of a multi cylinder engine using a single cylinder research engine. Another area of interest is the replication of multi-cylinder engine cold start emissions data with a single-cylinder engine test system. For this replication to occur, the single-cylinder engine must experience heat transfer to the engine coolant as if it were part of a multi-cylinder engine, in addition to the other multi-cylinder engine transient effects.
Technical Paper

Advances in Accumulator Car Design

1997-08-06
972645
The use of a hydraulic drive system with accumulator energy storage has the potential of providing large gains in fuel economy of internal combustion engine passenger automobiles. The improvement occurs because of efficient regenerative braking and the practicality of decoupling the engine operation from the driving cycle demands. The concept under study uses an engine-driven pump supplying hydraulic power to individual wheel pump/motors (P/M's) and/or an accumulator. Available P/M's have high efficiencies (e.g., 95%) at the ideal point of operation, but the efficiency falls off considerably at combinations of pressure, speed, and displacement that are significantly away from ideal. In order to maximize the fuel economy of the automobile, it is necessary to provide the proper combination of components, system design, and control policies that operate the wheel P/M's as close as possible to their maximum efficiency under all types of driving and braking conditions.
Technical Paper

Design and Development of the University of Wisconsin's Parallel Hybrid-Electric Sport Utility Vehicle

2003-03-03
2003-01-1259
The University of Wisconsin - Madison FutureTruck Team has designed and built a four-wheel drive, charge sustaining, parallel hybrid-electric sport utility vehicle for entry into the FutureTruck 2002 competition. This is a two-year project with tiered goals; the base vehicle for both years is a 2002 Ford Explorer. Wisconsin's FutureTruck, nicknamed the ‘Moolander’, weighs approximately 2050 kg. The vehicle uses a high efficiency, 2.5 liter, turbo-charged, compression ignition common rail, direct-injection engine supplying approximately 100 kW of peak power and a AC induction motor that provides an additional 33 kW of peak power. This hybrid drivetrain is an attractive alternative to the large displacement V6 drivetrain, as it provides comparable performance with similar emissions and drastically reduced fuel consumption.
Technical Paper

Design and Optimization of the University of Wisconsin's Parallel Hybrid-Electric Sport Utility Vehicle

2002-03-04
2002-01-1211
The University of Wisconsin - Madison FutureTruck Team has designed and built a four-wheel drive, charge sustaining, parallel hybrid-electric sport utility vehicle for entry into the FutureTruck 2001 competition. The base vehicle is a 2000 Chevrolet Suburban. Our FutureTruck is nicknamed the “Moollennium” and weighs approximately 2427 kg. The vehicle uses a high efficiency, 2.5 liter, turbo-charged, compression ignition common rail, direct-injection engine supplying approximately 104 kW of peak power and a three phase AC induction motor that provides an additional 68.5 kW of peak power. This hybrid drivetrain is an attractive alternative to the large displacement V8 drivetrain, as it provides comparable performance with lower emissions and fuel consumption. The PNGV Systems Analysis Toolkit (PSAT) model predicts a Federal Testing Procedure (FTP) urban driving cycle fuel economy of 11.24 km/L (26.43 mpg) with California Ultra Low Emission Vehicle (ULEV) emissions levels.
Technical Paper

Design and Testing of a Prototype Hybrid-Electric Split-Parallel Crossover Sports Utility Vehicle

2007-01-16
2007-01-1068
The University of Wisconsin - Madison Hybrid Vehicle Team has designed, fabricated, tested and optimized a four-wheel drive, charge sustaining, split-parallel hybrid-electric crossover vehicle for entry into the 2006 Challenge X competition. This multi-year project is based on a 2005 Chevrolet Equinox platform. Trade-offs in fuel economy, greenhouse gas impact (GHGI), acceleration, component packaging and consumer acceptability were weighed to establish Wisconsin's Vehicle Technical Specifications (VTS). Wisconsin's Equinox, nicknamed the Moovada, utilizes a General Motors (GM) 110 kW 1.9 L CIDI engine coupled to GM's 6-speed F40 transmission. The rear axle is powered by a 65 kW Ballard induction motor/gearbox powered from a 44-module (317 volts nominal) Johnson Controls Inc., nickel-metal hydride hybrid battery pack. It includes a newly developed proprietary battery management algorithm which broadcasts the battery's state of charge onto the CAN network.
Technical Paper

Design and Testing of a Prototype Midsize Parallel Hybrid-Electric Sport Utility

2004-01-25
2004-01-3062
The University of Wisconsin - Madison hybrid vehicle team has designed and constructed a four-wheel drive, charge sustaining, parallel hybrid-electric sport utility vehicle for entry into the FutureTruck 2003 competition. This is a multi-year project utilizing a 2002 4.0 liter Ford Explorer as the base vehicle. Wisconsin's FutureTruck, nicknamed the ‘Moolander’, weighs 2000 kg and includes a prototype aluminum frame. The Moolander uses a high efficiency, 1.8 liter, common rail, turbo-charged, compression ignition direct injection (CIDI) engine supplying 85 kW of peak power and an AC induction motor that provides an additional 60 kW of peak power. The 145 kW hybrid drivetrain will out-accelerate the stock V6 powertrain while producing similar emissions and drastically reducing fuel consumption. The PNGV Systems Analysis Toolkit (PSAT) model predicts a Federal Testing Procedure (FTP) combined driving cycle fuel economy of 16.05 km/L (37.8 mpg).
Technical Paper

Design of a Charge Regulating, Parallel Hybrid Electric FutureCar

1998-02-23
980488
Students, as members of Team Paradigm, at the University of Wisconsin-Madison have designed a charge regulating, parallel hybrid electric Dodge Intrepid for the 1997 FutureCar Challenge (FCC97). The goals for the Wisconsin “FutureCow” are to achieve an equivalent fuel consumption of 26 km/L (62 mpg) and Tier 2 Federal Emissions levels while maintaining the full passenger/cargo room, appearance, and feel of a stock Intrepid. These goals are realized through drivetrain simulations, a refined vehicle control strategy, decreased engine emissions, and aggressive weight reduction. The vehicle development has been coupled with 8,000 km of reliability and performance testing to ensure Wisconsin will be a strong competitor at the FCC97.
Technical Paper

Design of a Hydraulic Wheel Pump/Motor for a Hydrostatic Automobile

2002-03-19
2002-01-1349
Using a low-speed high-torque (LSHT) pump/motor to provide the speed range and torque for a hydrostatic automobile offers a number of advantages over using a high-speed low-torque pump/motor, combined with a gear reducer. However, there appear to be no LSHT units commercially available that have true variable displacement capability. Because of this void, a variable displacement pump/motor has been designed and built that could provide a direct drive for each wheel of a hydrostatic automobile. The unit uses some components such as the cylinder block, piston and modified rotating case from a commercially available radial piston pump/motor. Initial preliminary testing of the pump/motor indicates that it has good efficiency and performance characteristics, and, with further development should be very attractive for automotive use. This paper focuses on the design and kinematics of the device.
Technical Paper

Design of a Mild Hybrid Electric Vehicle with CAVs Capability for the MaaS Market

2020-04-14
2020-01-1437
There is significant potential for connected and autonomous vehicles to impact vehicle efficiency, fuel economy, and emissions, especially for hybrid-electric vehicles. These improvements could have large-scale impact on oil consumption and air-quality if deployed in large Mobility-as-a-Service or ride-sharing fleets. As part of the US Department of Energy's current Advanced Vehicle Technology Competition (AVCT), EcoCAR: The Mobility Challenge, Mississippi State University’s EcoCAR Team is redesigning and doing the development work necessary to convert a conventional gasoline spark-ignited 2019 Chevy Blazer into a hybrid-electric vehicle with SAE Level 2 autonomy. The target consumer segments for this effort are the Mobility-as-a-Service fleet owners, operators and riders. To accomplish this conversion, the MSU team is implementing a P4 mild hybridization strategy that is expected to result in a 30% increase in fuel economy over the stock Blazer.
Technical Paper

Determination of Diesel Injector Nozzle Characteristics Using Two-Color Optical Pyrometry

2002-03-04
2002-01-0746
An investigation of several diesel injector nozzles that produced different engine emissions performance was performed. The nozzle styles used were two VCO type nozzles that were manufactured using two different techniques, and two mini-sac nozzles that provided comparison. Fired experiments were conducted on a Detroit Diesel Series 50 engine. Optical access was obtained by substituting a sapphire window for one exhaust valve. Under high speed, high load, retarded injection timing conditions, it was discovered that each nozzle produced different specific soot and NOx emissions. High-speed film images were obtained. It was discovered that the temperature and KL factor results from the 2-color optical pyrometry showed significant differences between the nozzles. The authors propose the possibility that differences in air entrainment, caused by potential differences in CD due to surface finish, may contribute to the variance in emissions performance.
Technical Paper

Development of Micro-Diesel Injector Nozzles via MEMS Technology and Effects on Spray Characteristics

2001-03-05
2001-01-0528
Micro-machined planar orifice nozzles have been developed and used with commercially produced diesel injection systems. Such a system may have the capability to improve the spray characteristics in DI diesel engines. The availability of a MEMS (Micro-Electro-Mechanical-Systems) processing sequence supported the construction of micro-planar orifice nozzles, and micro-systems technology was also employed in our macro-instrumentation. To demonstrate this process, fourteen MEMS nozzles were fabricated with deep X-ray lithography and electroplating technology. The circular orifice diameters were varied from 40 to 260 microns and the number of orifices varied from one to 169. Three plates with non-circular orifices were also fabricated to examine the effect of orifice shape on spray characteristics. These nozzles were then attached to commercial injectors and the associated injection systems were used for the spray experiments.
Technical Paper

Development of Micro-Diesel Injector Nozzles via MEMS Technology and Initial Results for Diesel Sprays

1999-10-25
1999-01-3645
We have developed and used micro-machined injector nozzles with commercially produced diesel injection systems that have the capability to improve the spray characteristics in DI diesel engines. The availability of a MEMS (Micro-Electro-Mechanical-Systems) processing sequence supported the construction of micro-diesel injector nozzles, and micro-systems technology was also employed in our macro-instrumentation. Fourteen different circular plates (nickel-iron alloy) were fabricated with deep X-ray lithography and electroplating technology. Five plates that have a single orifice were fabricated to investigate the effect of orifice diameter on spray characteristics; i.e., 40 to 260 microns. The spacing between multiple orifices was also varied; e.g., two plates that each had 41 orifices and 169 orifices, respectively, with a diameter of 40 microns. Finally, three plates with non-circular orifices were also made to examine the effect of orifice shape on spray characteristics.
Technical Paper

Direct Calibration of LIF Measurements of the Oil Film Thickness Using the Capacitance Technique

1997-10-01
972859
A direct calibration has been performed on laser-induced fluorescence measurements of the oil film in a single cylinder air-cooled research engine by simultaneously measuring the minimum oil film thickness by the capacitance technique. At the minimum oil film thickness the capacitance technique provides an accurate measure of the ring-wall distance, and this value is used as a reference for the photomultiplier voltage, giving a calibration coefficient. This calibration coefficient directly accounts for the effect of temperature on the fluorescent properties of the constituents of the oil which are photoactive. The inability to accurately know the temperature of the oil has limited the utility of off-engine calibration techniques. Data are presented for the engine under motoring conditions at speeds from 800 - 2400 rpm and under varying throttle positions.
Journal Article

Divided Exhaust Period Implementation in a Light-Duty Turbocharged Dual-Fuel RCCI Engine for Improved Fuel Economy and Aftertreatment Thermal Management: A Simulation Study

2018-04-03
2018-01-0256
Although turbocharging can extend the high load limit of low temperature combustion (LTC) strategies such as reactivity controlled compression ignition (RCCI), the low exhaust enthalpy prevalent in these strategies necessitates the use of high exhaust pressures for improving turbocharger efficiency, causing high pumping losses and poor fuel economy. To mitigate these pumping losses, the divided exhaust period (DEP) concept is proposed. In this concept, the exhaust gas is directed to two separate manifolds: the blowdown manifold which is connected to the turbocharger and the scavenging manifold that bypasses the turbocharger. By separately actuating the exhaust valves using variable valve actuation, the exhaust flow is split between two manifolds, thereby reducing the overall engine backpressure and lowering pumping losses. In this paper, results from zero-dimensional and one-dimensional simulations of a multicylinder RCCI light-duty engine equipped with DEP are presented.
Technical Paper

Effects of Injection Pressure and Nozzle Geometry on D.I. Diesel Emissions and Performance

1995-02-01
950604
An emissions and performance study was performed to show the effects of injection pressure, nozzle hole inlet condition (sharp and rounded edge) and nozzle included spray angle on particulate, NOx, and BSFC. The tests were conducted on a fully instrumented single-cylinder version of the Caterpillar 3406 heavy duty engine at 75% and 25% load at 1600 RPM. The fuel system consisted of an electronically controlled, hydraulically actuated, unit injector capable of injection pressures up to 160 MPa. Particulate versus NOx trade-off curves were generated for each case by varying the injection timing. The 75% load results showed the expected decrease in particulate and flattening of the trade-off curve with increased injection pressure. However, in going from 90 to 160 MPa, the timing had to be retarded to maintain the same NOx level, and this resulted in a 1 to 2% increase in BSFC. The rounded edged nozzles were found to have an increased discharge coefficient.
Technical Paper

Effects of Injection Pressure and Nozzle Geometry on Spray SMD and D.I. Emissions

1995-10-01
952360
A study was performed to correlate the Sauter Mean Diameter (SMD), NOx and particulate emissions of a direct injection diesel engine with various injection pressures and different nozzle geometry. The spray experiments and engine emission tests were conducted in parallel using the same fuel injection system and same operating conditions. With high speed photography and digital image analysis, a light extinction technique was used to obtain the spray characteristics which included spray tip penetration length, spray angle, and overall average SMD for the entire spray. The NOx and particulate emissions were acquired by running the tests on a fully instrumented Caterpillar 3406 heavy duty engine. Experimental results showed that for higher injection pressures, a smaller SMD was observed, i.e. a finer spray was obtained. For this case, a higher NOx and lower particulate resulted.
Technical Paper

Emission Tests of Diesel Fuel with NOx Reduction Additives

1993-10-01
932736
In this paper results are given from single-cylinder, steady-state engine tests using the Texaco Diesel Additive (TDA) as an in-fuel emission reducing agent. The data include NOx, total unburned hydrocarbons, indicated specific fuel consumption, and heat release analysis for one engine speed (1500 RPM) with two different loads (Φ ≈ 0.3, IMEP = 0.654 MPa and Φ ≈ 0.5, IMEP = 1.006 MPa) using the baseline fuel and fuels with one percent and five percent additive by weight. The emissions were measured in the exhaust stream of a modified TACOM-LABECO single cylinder engine. This engine is a 114 mm x 114 mm (4.5″ x 4.5″) open chamber low swirl design with a 110.5 MPa (16,000 psi) peak pressure Bosch injector. The injector has 8 holes, each of 0.2 mm diameter. The intake air was slightly boosted (approximately 171 kPa (25 psia)) and slightly heated (333 K (140 °F)). In previous research on this engine the emissions, including soot, were well documented.
X