Refine Your Search

Topic

Author

Search Results

Technical Paper

A Comparative Study on Machinability Characteristics in Dry Machining of Inconel X-750 Alloy Using Coated Carbide Inserts

2018-07-09
2018-28-0031
Nickel based superalloys have a wide range of applications due to high mechanical strength at high temperatures, fracture toughness and resistance to corrosion. However, because of their outstanding properties, it is considered as the difficult to machine materials. Inconel alloy X-750 is used extensively in rocket-engine thrust chambers. Airframe applications include thrust reversers and hot-air ducting systems along with large pressure vessels are formed from Inconel alloy X-750. Moreover, the comparative analysis of machinability aspect using coated carbide inserts is reported few. The current study explains the machinability investigation on Inconel alloy X-750 superalloys using coated carbides. To collect the experimental data, the L16 experimental design plan is used to experiment with a machining length of 40 mm.
Technical Paper

A Comparative Tribological Performance of Lubricating Oils with Zinc Dialkyl Dithiophosphate and Zinc Oxide Nanoparticles as Additives

2019-10-11
2019-28-0174
The present work compares the tribological properties of ZnO (Zinc Oxide) nanoparticle based lubricant with ZDDP (zinc dialkyl dithiophosphate) based lubricant. The nanolubricant was prepared by mixing the nanoparticles in base oil followed by ultrasonification and ZDDP based lubricant was prepared by mixing ZDDP and stirring with base oil. Base oil used was mineral base oil. Both the lubricants were tested at three different temperatures, loads and roughness values. The test was carried out on AISI 52100 steel samples prepared by wire cutting and were grinded to three different levels of surface roughness. Friction and wear tests were performed using a reciprocating sliding tribo-tester at three different loads and temperatures. Taguchi orthogonal array was used to reduce the number of experiments. SEM, EDS and AFM analysis were carried out to study the surface wear phenomenon.
Technical Paper

A Study on the Turning Characteristics and Optimization of MOS2p and SiCp-Reinforced Al-Si10Mg Metal Matrix Composites

2018-07-09
2018-28-0043
In the fabrication of parts in auto and aero segments, the use of ceramic (SiCp, Al2O3p) reinforces aluminum alloy found to be increased than that of steel and cast iron. This matrix-reinforced alloy has a high strength to weight ratio along with higher modulus and hardness, the lower thermal coefficient of expansion, and improved tribological properties. To this extent, this paper investigates the turning characteristics and optimization study of newly developed metal matrix composites by the addition of both hard ceramic SiCp and soft stable lubricant molybdenum disulfide (MoS2p). The samples such as Sample 1: AlSi10Mg/3SiCp, Sample 2: AlSi10Mg/2MoS2p and Sample 3: AlSi10Mg/3SiCp /2MoS2p are prepared using the automated stir-casting machine. The particles are observed to be uniformly distributed in the composite. After density and hardness measurement, the samples are subjected to machining, and the responses are optimized by using response surface method.
Technical Paper

Braking System for ATV

2020-10-05
2020-01-1611
Design and simulation analysis of braking system for ATV is carried out with the assistance of Ansys and MATLAB. Heat generated increases the temperature of the disc brake at the rubbing surface resulting in thermal stresses in the components of the braking system. Static, structural, thermal, computational flow dynamics, vibrational & fatigue behavior of ventilated brake disc rotor, hub and upright are analyzed. Stainless Steel, SS-410 material configuration has been considered for disc brake rotor and results obtained are analyzed in terms of performance, longevity and efficiency. Braking efficiency and stopping distance curve are analyzed from their characteristics plot. Vibrational behavior, structural behavior, thermal behavior, performance efficiency, flow behavior of ventilated disc brake rotor can be easily depicted with respect to bump and droop during acceleration, high climb and maneuverability. Ventilated disc brake Rotor with outer diameter of 220 mm is used.
Technical Paper

CFD Analysis of Fuel Tank to Reduce Liquid Sloshing

2023-11-10
2023-28-0084
This paper demonstrates the sloshing phenomena of a cylindrical tank with and without baffles. The main objective of this study is to design baffles of different configurations to reduce sloshing in a cylindrical tank partially filled with gasoil-liquid subjected to only longitudinal acceleration and deceleration. Two different baffle designs have been introduced in the present study. A 3-D transient analysis of a cylindrical tank was carried out using ANSYS-FLUENT with and without baffles. Volume of Fluid (VOF) method was used to study the free surface profile of the fluid in the considered tank. Pressure distribution, velocity distribution and force distribution have been studied in the present study. It has been observed that the new design of baffle was able to reduce sloshing effectively.
Technical Paper

CFD Modeling of Advanced Swirl Technique at Inlet-Runner for Diesel Engine

2015-01-14
2015-26-0095
This paper summarizes the research work incorporated in the exploration of the potential of swirling in CI Engine and designing of a new mechanism, particularly at inlet, to deliver it to improve the in-cylinder air characteristics to eventually improve mixing and combustion process to improve the engine performance. The research is concentrated on the measures to be done on engine geometry so as to not only deliver advantage to any specific fuel. According to the CI combustion theory, better engine performance may be achieved with Higher Viscous Fuel by improving the in-cylinder air-fuel mixing by increasing the swirl (rotation of air view from top of the cylinder) and tumble (rotation of air view from front of the cylinder) of in-cylinder air inside the fuel-injected region. The proposed inlet component is embedded with airfoil and is suitably designed after being iterated from four steps.
Technical Paper

Characterization of AlSi10Mg Alloy Produced by DMLS Process for Automotive Engine Application

2019-10-11
2019-28-0134
Considerable weight of an automobile is constituted by the engine and there is scope for improvement in fuel efficiency and emission control through optimization of weight in the engine. In this work, AlSi10Mg alloy produced by the direct metal laser sintering (DMLS) is suggested for engine application which is a lightweight aluminum alloy. Mechanical properties like tensile strength, compressive strength, and hardness of both cast and DMLS manufactured alloy are compared followed by analysis of SEM images of tensile test fractured surfaces. Reciprocating wear test is carried out for one lakh cycles at 125°C temperature with SAE 40 grade oil as lubricant. Co-efficient of friction (COF), wear rate of the cast and DMLS manufactured samples are compared. Wear patterns are analyzed using SEM images of the wear tracks.
Technical Paper

Computational Analysis of 3D Unsteady Flow Over Flapping Wing

2013-09-17
2013-01-2098
This paper summarizes the complex unsteady, 3-D viscous flow aerodynamics (dominantly laminar) developed in flapping wing generating vortices and intersecting with them. Different flying creatures, (Insects, Birds, and Bats) flapping wing mechanisms are studied and hence being compared based on their wing kinematics and aerodynamic efficiency. The performance of low Reynolds number flyers is highly influenced by the wing shape, wing size, wing camber, aspect ratio, % camber thickness, elastic deformation, wing-beat frequency and wing twisting. The Computation technique used to analyze the wake characteristics of a flapping motion shows that the generation and shedding of vortices dominate the aerodynamic loading on the wing. The periodicity of the wing motion and the resultant vortices leads to conclude that any quantitative model must be based on unsteady aerodynamics and vortex dynamics.
Technical Paper

Computational Analysis of Pitch Sensitivity for a Concept Race Car

2022-10-06
2022-01-5065
The present numerical study investigates the design and analysis of a concept model Le Mans Grand Touring Prototype (LMGTP) car. Through analysis, aerodynamic pitch sensitivity and related factors are found to be detrimental to the straight-line stability of these high-speed race cars. Simulations are carried out on a commercial Computational Fluid Dynamics (CFD) tool for varying pitch angles of the car from −1° to +2.5°. For each pitch angle, steady-state pressure contours, velocity contours, and streamlines are presented. Additionally, coefficients and force values of lift and drag are calculated with the k-omega turbulence model implemented. Obtained numerical results are validated via Ahmed Body studies reported in the literature, and an average error deviation of 1.013% is exhibited. It is observed that lift force at the front axle increases with increasing pitch angles, leading to reduced pitch stability.
Technical Paper

Corrosion Characteristics on Friction Stir Welding of Dissimilar AA2014/AA6061 Alloy for Automobile Application

2019-10-11
2019-28-0063
Friction Stir Welding (FSW) is a widely used solid state welding process in which its heats metal to the below recrystallization temperature due to frictional force. FSW mostly avoids welding defects like hot cracking and porosity which are mainly occur in conventional welding techniques. In this process the combination of frictional force and the mechanical work provide heating the base metal to get defect free weld joints. Aluminium Alloys 2014 and 6061 are generally used in a wide range of automobile applications like Engine valves and tie rod, shipbuilding, and aerospace due to their high corrosion resistance, lightweight, and good mechanical properties. In the present work, aluminium alloys of AA6061 and AA2014 were effectively welded by friction stir welding technique. The tool rotational speed, travel speed, and tool profile are the important parameters in FSW process. High Speed Steel (HSS) tool with Hexagonal profile is used for this joining.
Technical Paper

Design Improvement of an Automotive Shock Absorber Component Subjected to Fretting Fatigue

2023-11-10
2023-28-0157
A shock absorber endurance test for an automobile that was supposed to resist at least 200,000 load cycles but failed to meet the statutory fatigue limit was under examination. This is due to the breakdown of the assembly that holds the shock absorber shims. This failure occurred due to Fretting fatigue. A design improvement is being introduced to avoid fretting fatigue on the shock absorber shim assembly. FEA is used to investigate the shim assembly in order to locate the stress zone. After adding more shims to the piston, fatigue life was significantly improved. The damping forces were unaffected by the fundamental solution that was applied to make this improvement.
Technical Paper

Design Optimization of an Epoxy Carbon Prepreg Drive Shaft and Design of a Hybrid Aluminium 6061-T6 Alloy/Epoxy Carbon Prepreg Drive Shaft

2018-07-09
2018-28-0014
Epoxy carbon fiber composite materials are known for their light weight and high performance. They can be effective substitutes for commonly used materials for making drive shafts. Fiber orientation angle plays a major role in determining such a drive shaft’s responses. The responses considered in this paper are critical buckling torque, fundamental natural frequency and total deformation. A drive shaft made of epoxy carbon unidirectional prepreg is generated using ANSYS 18.0 ACP Composite Prepost. The objective of this paper is to determine an optimal configuration of fiber orientation angles for four, five and six-layered epoxy carbon drive shaft which tends to increase critical buckling torque and fundamental natural frequency while decreasing the total deformation. The optimal configuration which satisfies this objective for the three responses is identified by Minitab 17 statistical software.
Technical Paper

Effect of Cryogenic Treatment on Inconel 718 Produced by DMLS Technique

2019-10-11
2019-28-0140
The main purpose of this study is to investigate additive manufactured Inconel super alloy subjected to cryogenic treatment (CT). Cryogenic treatment is mainly used in aerospace, defense and automobile application. Direct metal laser sintering is an additive manufacturing technique used for manufacturing of complex and complicated functional components. Inconel is an austenitic chromium nickel based super alloy often used in the applications which require high strength & temperature resistant. In this work, a study is carried out on microstructure and mechanical properties of additive manufactured Inconel 718 when subjected to cryogenic treatment at three different time intervals. The micro-structural evolution of IN718 super-alloy before and after CT was investigated by both optic microscope and scanning electron microscope. Surface roughness and hardness at different CT time intervals has also analyzed. Additionally, XRD technique was used to analyze the surface residual stress.
Technical Paper

Electromagnetic Analysis of Permanent Magnet Brushed DC Motor for Automotive Applications—Part 1

2021-02-11
2021-01-5001
Permanent magnet brushed DC (PMBDC) motors are mostly preferred in many automotive applications because of better power density and easier control. Five different automotive applications such as electric parking brake (EPB), power seat, power window, sunroof drive, and tire air pump are chosen and discussed in this paper. A step-by-step electromagnetic analysis is carried out for all the designed models. Low-cost ferrite-based magnets are used for cost reduction keeping the efficiency as high above 77% in all the models. Comparison on performance and cost are discussed in the conclusion section.
Technical Paper

Emission and Tribological Studies on Nano CuO/Jatropha Methyl Ester/Synthetic Mineral Oil in a Two-Stroke Engine

2019-10-11
2019-28-0095
In lieu of the drastic growth of the vehicle population, there is a huge consumption of fossil fuels and mineral oils for mobility. This leads to depletion in fossil fuels and mineral oils which are the by-products of petroleum. These fossil fuels can’t sustain for a long period of time because of its toxicity. In order to reduce the usage of existing mineral oil for lubrication, a source of non-edible oil from Jatropha curcus is processed as jatropha methyl ester (JME). It is holding high viscosity, density and easy blend with base oil. In this current work, the wear resistance of the lubricating oil is enhanced by the addition of nano-copper oxide particle blend with the base oil. The emission performance and tribological behavior have been experimentally tested in 98.2CC two-stroke air cooled engine. The 20% of JME blend with CuO nano particle provides better emission performance and wear characteristics than the other combination of blends.
Technical Paper

Empirical and Artificial Neural Network Modeling of Laser Assisted Hybrid Machining Parameters of Inconel 718 Alloy

2018-07-09
2018-28-0023
In the present paper, to predict the process relation between laser-assisted machining parameters and machinability characteristics, statistical models are formulated by employing surface response methodology along with artificial neural network. Machining parameters such as speed of cut; the rate of feed; along with the power of laser are taken as model input variables. For developing confidence limit in collected raw experimental data, the full factorial experimental design was applied to cutting force; surface roughness; along with flank wear. Response surface method (RSM) with the least square method is used to develop the theoretical equation. Furthermore, artificial neural network method has been done to model the laser-assisted machining process. Then, both the models (RSM and ANN) are compared for accuracy regarding root mean square error (RMSE); model predicted error (MPE) along with the coefficient of determination (R2).
Technical Paper

Experimental Analysis of Surface Morphology of Commercial Fuel Filter with Oxygenated Fuels

2017-07-10
2017-28-1957
Oxygenated fuels like biodiesel and ethanol possess prominent characteristics as an alternative fuel for diesel engines. However, these fuels are corrosive in nature and hygroscopic. This might results in material incompatibility with the fuel supply system of an automobile. The filter consists of a filter membrane that that traps the contaminants from the fuel and prevents them from entering into the combustion chamber. The operational hours of the filter membrane depend on the quality of fuel employed. The conventional filter is designed for fossil diesel operation and hence the filter life might degrade earlier in the case of oxygenated fuels like biodiesel or ethanol. The proposed work focuses on the impact of oxygenated fuels, viz. karanja and ethanol blended karanja biodiesel on the filter membrane and its flow characteristics. Two tests, pressure difference and contaminant retention test are carried out in accordance with Japanese standard D1617:1998.
Technical Paper

Experimental Investigation on Turning Characteristics of TiC/MoS2 Nanoparticles Reinforced Al7075 Using TiN Coated Cutting Tool

2019-10-11
2019-28-0165
In recent years, aluminum metal matrix composites (Al-MMC) are found as a potential material for numerous applications owing to its excellent tribological and mechanical properties. In this work, the machining characteristics of aluminum alloy (Al7075) reinforced with TiC/MoS2 having nanoparticle has been studied. The samples of aluminum metal matrix composites by varying TiC in 0, 2 and 4 and MoS2 in 0 and 2 of the percentage weight of aluminum alloy (Composite 1(Al7075), Composite 2 (Al7075/2TiC/2MoS2) and composite 3 (Al7075/4TiC/2MoS2), respectively) are fabricated by the stir-casing method. The turning characteristics of the developed metal matrix composites are studied at various parameters such as cutting velocity (30 m/min, 60 m/min and 90 m/min), cutting depth (0.5 mm, 1.0 mm and 1.5 mm) and composites (1, 2 and 3) using TiN coated cutting tool by dry turning at 0.05 mm/rev feed rate.
Technical Paper

Experimental Investigation on the Mechanical Properties of Date Seed and Neem Gum Powder Added Natural Composites

2024-02-23
2023-01-5150
The experimental investigation aims to improve natural composite materials aligned with feasible development principles. These composites can be exploited across several industries, including the automobile and biomedical sectors. This research employs date seed powder and neem gum powder as reinforcing agents, along with polyester resin as the base material. The fabrication route comprises compression moulding, causing the production of the natural composite material. This study focuses extensively on mechanical characteristics such as tensile strength, flexural strength, hardness, and impact resistance to undergo comprehensive testing. Furthermore, the chemical properties of the composites are examined using the FTIR test to gain understanding by integrating different proportions of date seed powder (5%, 10%, 15%, and 20%) and neem gum powder (0%, 3%, 6%, and 9%) in the matrix phase.
Technical Paper

Experimental Investigations on Lean Burn Spark Ignition Engine Using Methanol - Gasoline Blends

2019-01-09
2019-26-0088
The present study discusses the effects of engine combustion, performance and emission features of methanol-gasoline blend fired lean burn Spark Ignition (SI) engine. Performance features such as Brake Power (BP), Brake Specific Fuel Consumption (BSFC), Brake Thermal Efficiency (BTE), tail pipe emissions namely Hydrocarbon (HC), Carbon Monoxide (CO), Nitrogen Oxide (NO), Carbon di Oxide (CO2) and combustion characteristics viz. in-cylinder pressure, Heat Release Rate (HRR), Cumulative Heat Release (CHR) and variation of mean effective pressure were measured and compared with that of neat gasoline. Experiments were conducted on a modified sole cylinder four-stroke compression engine (Kirloskar TAF1) to operate as SI engine with a compression ratio of 10.5:1. A new manifold injection system and ignition system were developed by replacing the fuel injection pump and injector.
X