Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Technical Paper

A Comparative Tribological Performance of Lubricating Oils with Zinc Dialkyl Dithiophosphate and Zinc Oxide Nanoparticles as Additives

2019-10-11
2019-28-0174
The present work compares the tribological properties of ZnO (Zinc Oxide) nanoparticle based lubricant with ZDDP (zinc dialkyl dithiophosphate) based lubricant. The nanolubricant was prepared by mixing the nanoparticles in base oil followed by ultrasonification and ZDDP based lubricant was prepared by mixing ZDDP and stirring with base oil. Base oil used was mineral base oil. Both the lubricants were tested at three different temperatures, loads and roughness values. The test was carried out on AISI 52100 steel samples prepared by wire cutting and were grinded to three different levels of surface roughness. Friction and wear tests were performed using a reciprocating sliding tribo-tester at three different loads and temperatures. Taguchi orthogonal array was used to reduce the number of experiments. SEM, EDS and AFM analysis were carried out to study the surface wear phenomenon.
Technical Paper

Braking System for ATV

2020-10-05
2020-01-1611
Design and simulation analysis of braking system for ATV is carried out with the assistance of Ansys and MATLAB. Heat generated increases the temperature of the disc brake at the rubbing surface resulting in thermal stresses in the components of the braking system. Static, structural, thermal, computational flow dynamics, vibrational & fatigue behavior of ventilated brake disc rotor, hub and upright are analyzed. Stainless Steel, SS-410 material configuration has been considered for disc brake rotor and results obtained are analyzed in terms of performance, longevity and efficiency. Braking efficiency and stopping distance curve are analyzed from their characteristics plot. Vibrational behavior, structural behavior, thermal behavior, performance efficiency, flow behavior of ventilated disc brake rotor can be easily depicted with respect to bump and droop during acceleration, high climb and maneuverability. Ventilated disc brake Rotor with outer diameter of 220 mm is used.
Technical Paper

Corrosion Characteristics on Friction Stir Welding of Dissimilar AA2014/AA6061 Alloy for Automobile Application

2019-10-11
2019-28-0063
Friction Stir Welding (FSW) is a widely used solid state welding process in which its heats metal to the below recrystallization temperature due to frictional force. FSW mostly avoids welding defects like hot cracking and porosity which are mainly occur in conventional welding techniques. In this process the combination of frictional force and the mechanical work provide heating the base metal to get defect free weld joints. Aluminium Alloys 2014 and 6061 are generally used in a wide range of automobile applications like Engine valves and tie rod, shipbuilding, and aerospace due to their high corrosion resistance, lightweight, and good mechanical properties. In the present work, aluminium alloys of AA6061 and AA2014 were effectively welded by friction stir welding technique. The tool rotational speed, travel speed, and tool profile are the important parameters in FSW process. High Speed Steel (HSS) tool with Hexagonal profile is used for this joining.
Technical Paper

Design Optimization of an Epoxy Carbon Prepreg Drive Shaft and Design of a Hybrid Aluminium 6061-T6 Alloy/Epoxy Carbon Prepreg Drive Shaft

2018-07-09
2018-28-0014
Epoxy carbon fiber composite materials are known for their light weight and high performance. They can be effective substitutes for commonly used materials for making drive shafts. Fiber orientation angle plays a major role in determining such a drive shaft’s responses. The responses considered in this paper are critical buckling torque, fundamental natural frequency and total deformation. A drive shaft made of epoxy carbon unidirectional prepreg is generated using ANSYS 18.0 ACP Composite Prepost. The objective of this paper is to determine an optimal configuration of fiber orientation angles for four, five and six-layered epoxy carbon drive shaft which tends to increase critical buckling torque and fundamental natural frequency while decreasing the total deformation. The optimal configuration which satisfies this objective for the three responses is identified by Minitab 17 statistical software.
Technical Paper

Electromagnetic Analysis of Permanent Magnet Brushed Direct Current Motors for Automotive Applications—Part 2

2021-02-11
2020-01-5229
This paper describes the modelling and electromagnetic analysis of Permanent Magnet Brushed Direct Current (PMBDC) motor using Finite Element Analysis (FEA) software packages. The designed motors referred in this analysis are fit for use in applications of the electronic throttle control and exhaust gas recirculation in automobiles. Performances of the designed PMBDC models are compared with the traditionally used machines. Three PMBDC models with different operating characteristics are proposed for the two applications. Each model is suitable for use in both applications. Cost analysis of the motors is also carried out, and comparison with the traditionally used machines is done.
Technical Paper

Empirical and Artificial Neural Network Modeling of Laser Assisted Hybrid Machining Parameters of Inconel 718 Alloy

2018-07-09
2018-28-0023
In the present paper, to predict the process relation between laser-assisted machining parameters and machinability characteristics, statistical models are formulated by employing surface response methodology along with artificial neural network. Machining parameters such as speed of cut; the rate of feed; along with the power of laser are taken as model input variables. For developing confidence limit in collected raw experimental data, the full factorial experimental design was applied to cutting force; surface roughness; along with flank wear. Response surface method (RSM) with the least square method is used to develop the theoretical equation. Furthermore, artificial neural network method has been done to model the laser-assisted machining process. Then, both the models (RSM and ANN) are compared for accuracy regarding root mean square error (RMSE); model predicted error (MPE) along with the coefficient of determination (R2).
Technical Paper

Fatigue Life Prediction of Heavy Duty Automobile’s Brake Drum through Coupled Thermo-Mechanical Analysis

2019-10-11
2019-28-0031
The aim of this paper is to demonstrate the methodology to simulate the induced stresses/strains due to thermo-mechanical loading of automobile brake drum.. The brake drum undergoes mechanical load due to applied brake pressure and thermal load due to friction generated between brake pad and brake drum while brake is applied. This coupled thermo-mechanical loading affects the life of the brake drum as the stiffness of the brake drum is reduced. The conventional method of simulating this problem is done using Lagrangian discretization in which the load is applied and inertia effect due to angular velocity is applied to a drum at static condition. In contrast, in this paper Eulerian discretization is adopted for finite element analysis, in which drum brake model is discretized as spatially dependent that facilitates actual rotation of brake drum with simultaneous application of brake load resulting more precise simulation.
Technical Paper

Frontal Crash Worthiness Performance of Bi-Tubular Corrugated Conical: Structures under Axial Loads at Low Velocity

2020-04-14
2020-01-0983
Vehicle collisions are a major concern in the modern automotive industry. To ensure the passenger safety, major focus has been given on energy absorption pattern on the crumple zone during collision, which lead to the implementation of new design of the crash box for low speed collision. The main aim of this research is optimization of the conical shaped structure based on its mean diameter, graded thickness and semi apical angle. Further, to decrease initial peak load of the conical crash box, corrugations are integrated on structure and optimized based on different parameters, such as number of corrugations, pattern of corrugation relative to both tubes and amplitude of corrugation. The concept of bi-tubular structure is proposed to improve both specific energy absorption and initial peak load during crash event. A finite element model is created to perform parametric study on corrugated conical tube based on axial load conditions at low velocity.
Technical Paper

Influence of Various Parameters of Turning Low Carbon Steel with M2 HSS Tool Using Minimum Quantity Lubrication

2022-12-23
2022-28-0533
Turning is a widely used manufacturing process in mechanical machining industries, while the cost associated with this process is high due to the cost involved in changing tools or tool regrinding. All the parameters of turning, like feed rate, cutting speed, and depth of cut, substantially impact the tool wear, which subsequently reduces tool life. Cooling methods like flooding, Minimum Quantity Lubrication (MQL), etc., are incorporated to minimise these effects on the tool and workpiece interface. When using these cooling techniques, the process parameters involved play vital roles in increasing the effectiveness. This paper focuses on the effects of machining parameters on the tool and the workpiece quality. Experiments were conducted to study the impact of various input parameters of the turning process on the tool tip temperature, cutting forces, and tool wear, ultimately affecting the tool's life.
Technical Paper

Investigation of Machinability Characteristics on Turning of Nimonic 90A Using Al2O3 and CNT Nanoparticle in Groundnut Oil

2019-10-11
2019-28-0072
Nimonic 90A alloy is a nickel-chromium-cobalt alloy and found as a potential material for turbine blades, discs, forgings, a ring section, and hot-working tools. This paper presents the effect of concentration along with cutting speed and feed rate on Fz: cutting force, Ra: surface roughness and Vba: tool wear with the application of two different nanofluids (NFS) on turning of Nimonic 90A by TiAlN PVD carbide cutting inserts. The nanoparticles suspended in oil taken for present investigation are nAl2O3, nCNT, and groundnut oil. The Taguchi L9 orthogonal array and derringer’s desirability response surface has been employed for parameter design and optimal search. 3D surface plots, factor effect plots, Taguchi S/N, and variance tests are used to study the effect of concentration on the machining performance of Nimonic 90A. The statistical analysis revealed % concentration for nCNT and cutting speed for nAl2O3 are found as an influenced parameter on performance characteristics.
Technical Paper

Mechanical and Corrosion Behaviour of Al 7075 Composite Reinforced with TiC and Al2O3 Particles

2019-10-11
2019-28-0094
Various research regarding new types of fabrication and modifications of Aluminium alloy to improve the existing properties are going on. The wide range application of aluminium alloy is in aerospace and Automobile Industries. The demand for this material improved by mechanical properties with little to zero increment in weight. The current work is based on the fabrication of hybrid aluminium metal matrix composites with the addition of TiC (Titanium Carbide) and Al2O3 (Aluminium Oxide) reinforcement particle using stir casting technique. Three types of hybrid composite samples were prepared based on the weight percentage 5% Al2O3+0% TiC (sample-1), 8% Al2O3 + 12% TiC (sample-2), 20% Al2O3+15% TiC (sample-3). The objective of the study is to analyze the mechanical and corrosion properties of the hybrid composite with the influence of the reinforcement and varying the weight fraction of the particles.
Technical Paper

Modeling and Analysis of Motorcycle Assembly for Dynamic Investigation

2023-11-10
2023-28-0117
“The purpose of this study is to explore the structural behavior of motorcycle frames that are fabricated from metals such as steel and aluminum, and that are welded together to generate beams. The components of the wheel, handlebar, and saddle are assembled together to form the chassis of the bicycle. For the purpose of determining modal characteristics such natural frequencies and mode shapes, two different analytical approaches, namely finite element analysis (FEA) and experimental modal analysis (EMA), were utilized. The framework of the chassis was design in 3D using CAD software to carry out the FEA, and after specifying the meshing type and material parameters, normal mode analysis was carried out. To contrast modal characteristics with FEA results, EMA utilized impact hammer testing with a roving accelerometer approach.
Technical Paper

Numerical Analysis and Optimization of Heat Transfer for FSAE Radiator for Various Sidepod Designs

2023-11-10
2023-28-0055
Heat transfer optimization is a crucial aspect of the design process for Formula Student race cars, particularly for the radiator, usually housed in a side pod. For the car to operate at peak performance, a well-designed radiator-sidepod system is essential such that it can dissipate heat generated by the engine faster, for the car to run in optimal performance. Testing the car physically for various radiator-sidepod design iterations is a very difficult task, also considering the costs to manufacture the radiator-sidepod setup. The objective of this study is to develop a comprehensive methodology for analysing heat transfer through radiator setup using Computational Fluid Dynamics and to validate it through experimental investigations, to enhance performance and efficiency of the radiator setup. It further explains how to find out its heat transfer efficiency, and to choose the right radiator-sidepod setup, giving optimal performance.
Technical Paper

Parameter Optimization during Minimum Quantity Lubrication Turning of Inconel 625 Alloy with CUO, Al2O3 and CNT Nanoparticles Dispersed Vegetable-Oil-Based Cutting Fluid

2019-10-11
2019-28-0061
Inconel 625, nickel based alloy, is found in gas turbine blades, seals, rings, shafts, and turbine disks. On the other hand, the manufacturing of this alloy is challenging, mainly when machining processes are used due to excellent mechanical properties. Application of nanofluids in minimum quantity lubrication (MQL) shows gaining importance in the machining process, which is economical and eco-friendly. The principal objective of this investigational work is to study the influence of three types of nanofluids in the MQL turning of Inconel 625 nickel based alloys. The used nanofluids are multi-walled carbon nanotubes (CNT), alumina (Al2O3) and copper oxide (CUO) dispersed in vegetable oil. Taguchi-based L27 orthogonal array is used for the experimental design. The parameter optimization of design variables over response is carried out by the use of Taguchi-based derringer's desirability function.
Technical Paper

Stress and Model Analysis of Upper and Lower Bolster Components of Molten Steel Transfer Vehicle

2019-10-11
2019-28-0119
The transportation of hot metal from blast furnaces to melting shops is carried out by molten steel transfer vehicle such as Torpedo ladle car in the steel plants. In need to design Torpedo ladle car within size limitation, capacity requirement and withstanding the impact, static, thermal shock and abrasion conditions, structural analysis is essential for validation. In this paper, stress and model analysis for upper and lower bolsters of Torpedo Ladle Car is carried out. The components are modelled in CAD and analysed using finite element method using software with the required boundary conditions. The results of structural analysis of bolster components are presented and discussed. The results shows that the deflection at the centre of upper and lower bolster was due to bending and applied load. The modal analysis predicted the natural frequencies by using block lanczos method.
Technical Paper

Surface Modification of Aluminium Alloy 5083 Reinforced with Cr2O3/TiO2 by Friction Stir Process

2019-10-11
2019-28-0179
The surface properties have a vital role in the overall performance of the parts like brake shoe pad and other frame system. The mechanical and residual stress measurements of aluminium alloy 5083 were investigated on friction stir processed plates using the reinforcements of chromium oxide (Cr2O3) and titanium dioxide (TiO2) separately as well as combination of these powders. A comparative study was made to analyze the effects of reinforcements, tool type (cylindrical and threaded), parameters and the volume fraction of the reinforcements. The mechanical properties such as surface hardness and residual stress of the friction stir processed specimens were investigated. The experimental results shows that there was a significant increase in surface hardness (118 HRC) as well as a decrease in residual stress compare to the base metal. This study also reveals that the threaded tool with a reinforcement of Cr2O3 and TiO2 reflected better mechanical properties than the cylindrical tool.
Technical Paper

Turning of Inconel 825 with Coated Carbide Tool Applying Vegetable-Based Cutting Fluid Mixed with CuO, Al2O3 and CNT Nanoparticles by MQL

2019-10-11
2019-28-0060
Inconel 825 is nickel (Ni)-iron (Fe)-chromium (Cr) alloy with additions of copper (Cu), molybdenum (Mo), and titanium (Ti). The alloy has excellent resistance to corrosion and is often the most cost-effective alloy in sulphuric acid piping vessels and chemical process equipment. No attempt of applying MQL with three nanofluids was reported conferring to the works accessed. The present study is focused on evaluating the effect of the addition of three nanoparticles (CuO, Al2O3, and CNT) in vegetable oil applied by MQL mode during turning of Inconel 825 with coated carbide tool. Cutting force, surface roughness, and tool wear are evaluated. The results showed that the addition of nCNT substantially improved the machining performance and smaller flank the tool edge, while the adhesion and abrasion are observed as wear mechanism and better results are obtained at 0.5% of nCNT+ vegetable oil to produce the lowest values.
X