Refine Your Search

Topic

Author

Search Results

Technical Paper

A Discussion on Interior Compartment Doors and Latches

2004-03-08
2004-01-1483
Interior compartment doors are required by Federal Motor Vehicle Safety Standard (FMVSS) 201, to stay closed during physical head impact testing, and when subjected to specific inertia loads. This paper defines interior compartment doors, and shows examples of several different latches designed to keep these doors closed. It also explores the details of the requirements that interior compartment doors and their latches must meet, including differing requirements from automobile manufacturers. It then shows the conventional static method a supplier uses to analyze a latch and door system. And, since static calculations can't always capture the complexities of a dynamic event, this paper also presents a case study of one particular latch and door system showing a way to simulate the forces experienced by a latch. The dynamic simulation is done using Finite Element Analysis and instrumentation of actual hardware in physical tests.
Technical Paper

A Filter Seal Model for Point Mobility Prediction of Air Induction Systems

2006-04-03
2006-01-1209
Virtual design validation of an air induction system (AIS) requires a proper finite element (FE) assembly model for various simulation based design tasks. The effect of the urethane air filter seal within an AIS assembly, however, still poses a technical challenge to the modeling of structural dynamic behaviors of the AIS product. In this paper, a filter seal model and its modeling approach for AIS assemblies are introduced, by utilizing the feature finite elements and empiric test data. A bushing element is used to model the unique nonlinear stiffness and damping properties of the urethane seal, as a function of seal orientation, preloading, temperature and excitation frequency, which are quantified based on the test data and empiric formula. Point mobility is used to character dynamic behaviors of an AIS structure under given loadings, as a transfer function in frequency domain.
Technical Paper

A Study on the Strength of Catalytic Converter Ultra Thin Wall Substrates

2003-03-03
2003-01-0662
Application of Ultra Thin Wall (UTW) ceramic substrates in the catalytic converter system requires the canner and component manufacturers to better understand the root cause and physics behind substrate breakage during the canning process. For this purpose, a ceramic substrate strength study for shoebox design has been conducted within Visteon Corporation. Computer Numerical Control (CNC) machined top and bottom fixtures, with identical inner surfaces as shoebox converter upper and lower shells, were used to crush mat wrapped substrates. Thin film pressure sensor technology enables the recording of substrate surface pressure during the compression process. Shell rib, washcoat, canning speed and cell density effects on substrate failure have been experimentally investigated. The development of a mathematical model helps to identify a better indicator to evaluate the substrate strength in the canning process and establish the strength for uncoated & coated substrates.
Technical Paper

Application of DOE Methods to RPM-Domain Data for Hydraulic Steering Pump NVH Improvement

2003-05-05
2003-01-1431
The present work demonstrates the application of Design of Experiments (DOE) statistical methods to the design and optimization of a hydraulic steering pump for NVH performance. DOE methods were applied to RPM-domain data to examine the effect of several different factors, as well as the interactions between these factors, on pump NVH. Whereas most DOE analyses typically consider only a single response variable, the present work considered multiple response variables. Specifically, pump NVH performance curves for several pump rotational orders over a range of shaft speeds were analyzed. Thus, it was possible to determine the effect of the factors in question over the entire speed range of pump operation, rather than a single speed or setting. Statistical methods were applied to determine which factors and interactions had a significant effect on pump NVH. These factors were used to construct an empirical mathematical prediction model for NVH performance.
Technical Paper

Blind Spot Monitoring by a Single Camera

2009-04-20
2009-01-1291
A practical and low cost Blind Spot Monitoring system is proposed. By using a single camera, the range and azimuth position of a vehicle in a blind spot are measured. The algorithm is based on the proposed RWA (Range Window Algorithm). The camera is installed on the door mirror and monitoring the side and rear of the host vehicle. The algorithm processes the image and identifies range and azimuth angle of the vehicle in the adjacent lane. This algorithm is applied to real situations. The 388 images including several kinds of vehicles are analyzed. The detection rate is 86% and the range accuracy is 1.6[m]. The maximum detection range is about 30[m].
Technical Paper

Bushing Characteristics of Stabilizer Bars

2003-03-03
2003-01-0239
A stabilizer bar in a suspension system is useful for preventing excessive rolls in vehicle maneuvers like cornering. Stabilizer bars are supported with bushings by either a frame or a subframe. To prevent the axial movement of the stabilizer bar within the bushing, features like add on collars, upset rings, grippy flats etc. are used on the stabilizer bar. At Visteon Corporation, several new stabilizer bar - bushing systems are developed where such axial movement is prevented by the use of compressive force. Relative merits of different stabilizer bar - bushing systems are compared in terms of roll stiffness and maximum stress on the bar through the use of finite elements.
Technical Paper

CAE Considerations in the Modeling of Welded Joints

2005-04-11
2005-01-0512
Welding is one of the most commonly used fabrication method in various automotive applications. Welding is a metallurgical fusion process in which parts or work pieces to be joined are heated above their melting temperature and then solidified. Some of the effects of the welding include residual stresses and Heat Affected Zone (HAZ). A methodology is proposed to study the welding process using the commercial finite element software, ABAQUS. Non linear transient heat transfer analysis is used. Effects of heat energy input rate and heat input time on residual stresses and HAZ are determined.
Technical Paper

CAE Virtual Door Slam Test for Plastic Trim Components

2003-03-03
2003-01-1209
Visteon has developed a CAE procedure to qualify plastic door trim assemblies under the vehicle door slam Key Life Test (KLT) environments. The CAE Virtual Door Slam Test (VDST) procedure simulates the environment of a whole door structural assembly, as a hinged in-vehicle door slam configuration. It predicts the durability life of a plastic door trim sub-assembly, in terms of the number of slam cycles, based on the simulated stresses and plastic material fatigue damage model, at each critical location. The basic theory, FEA methods and techniques employed by the VDST procedure are briefly described in this paper. Door trim project examples are presented to illustrate the practical applications and their results, as well as the correlation with the physical door slam KLTs.
Technical Paper

Compressor Body Temperature and Lubrication

2013-04-08
2013-01-1501
The paper addresses compressor body temperature (crankcase) importance to the vehicle AC system long-term durability. Majority of OEM vehicle test evaluation is to see if AC system can pass compressor discharge temperature and discharge pressure targets. Most OEMs adopt 130°C max compressor discharge temperature and 2350 kpag head pressure as the target. From the field, although some of the compressor failure results from a high compression ratio, and compressor discharge temperature that are caused by the poor front end airflow, etc., high percentage compressor failed systems exhibit not too high compression ratio and compressor discharge temperature, but having the trace of high temperature in the shaft area, gasket area, etc. With introducing more and more variable swash plate compressor applications, OEMs start to see more and more compressor failures that are not related to a high compressor discharge temperature but the trace of high compressor body temperature.
Technical Paper

Construction and Application of Near Field (TIR Type) Lenses for Automotive Lighting Functions

2007-04-16
2007-01-1040
Light Emitting Diodes (LEDs) are fast becoming the preferred light sources for automotive lighting applications. They emit light at cone angles equal (hemispherical) or less (conical) than 2Π radians. One way for efficiently collecting and collimating light from LED light sources is to use Near Field Lenses (NFLs). NFLs are collimators using refraction and total internal reflection (TIR) to efficiently collect and direct light. They tend to have thick sections and therefore require challenging molding techniques, and they may have the LED source optically coupled directly into them. Beside these functional aspects, NFLs offer unique styling for different lighting functions such as those in rear combination lamps (RCLs), front turn signal lamps, daytime running lamps (DRLs) and headlamps.
Technical Paper

Control Method of Dual Motor-Based Steer-by-Wire System

2007-04-16
2007-01-1149
This paper describes a front road wheel steer-by-wire system with two actuator motors on the rack and pinion assembly to move the road wheels. Dual actuators are used to provide actuator redundancy and to enhance the fault tolerance capability. When one actuator faults or fails, the other actuator is designed to work independently and maintain full system performance. The paper emphasizes control method to implement the motion control for the front road wheel steer-by-wire system with two actuators on the common load. The proposed dual servo synchronization motion control implements the angle tracking for the road wheel reference input by controlling two actuators synchronously and cooperatively. It includes two servo feedback control loops to track the common reference input. The angular position error between two feedback loops is compensated using a synchronized compensator.
Technical Paper

DSS, The Driver Stability System of Visteon

2002-03-04
2002-01-0782
This paper introduces the Driver Stability System (DSS) at Visteon. DSS is a new active comfort / safety system for automobiles which controls the seat bolsters independently in real time to enhance the lateral support of the occupants. Under turning maneuvers, DSS reacts to the vehicle dynamics to provide an increased contact area between the occupants and their seats, allowing optimal occupant location with respect to such variables as steering wheel angle, lateral acceleration, yaw rate, and vehicle velocity. The lateral force compensation is directly coupled to the dynamic movement of vehicle chassis and the change of road profile. The system consists of the seat bolster assembly including DC motors, wheel speed sensors, steering wheel sensor, lateral accelerometer, yaw rate sensor, and electronic control unit (ECU). This paper also discusses the control concept of DSS and its realistic controller structure.
Technical Paper

Design Parameter Tradeoffs for LED Headlamp Applications

2007-04-16
2007-01-0871
High-power LEDs and LED headlamps have become a serious consideration for the automotive industry. White LEDs have achieved the required performance for initial automotive headlamp applications. However tradeoffs among several attributes such as efficiency, cost, weight and performance profoundly affect LED headlamp development and need to be addressed by vehicle manufacturers, lamp set makers and LED source suppliers in order for LED headlamps to be effective. The solutions to these tradeoffs relates to the behavior of the LED sources, the thermo-mechanical integration of LEDs in a headlamp environment and input from the vehicle manufacturer regarding styling and packaging for an LED headlamp on the respective targeted vehicles.
Technical Paper

Design and Development of Light Weight Al Spindle

2002-03-04
2002-01-0676
The demand for improved vehicle fuel economy drives the auto engineers to look for opportunities in weight reduction of automotive systems and components. This paper presents inventions on the design and development of a lightweight spindle. In this new product, the spindle body is made from an Al alloy for a substantial weight reduction in comparison to the tradition iron spindle body. The shaft of the spindle is made from high strength steel to meet strength requirements. The design shows the unique feature of the joining area between the spindle body and shaft. The related joining process is applied to produce a strong joint between the two parts made of different materials. The testing results will be presented and discussed.
Technical Paper

Development of a Canning Method for Catalytic Converters using Ultra Thin Wall Substrates

2004-03-08
2004-01-0144
There are benefits of using ultra thin wall (UTW) substrates (i.e., 900/2, 400/4, etc) in lowering cost and emission level. However, the more fragile mechanical characteristics of the UTW present a challenge to design and manufacture of robust catalytic converters. This paper describes a method of canning trial, where a combined Design of Experiment / Monte-Carlo analysis method was used, to develop and validate a canning method for ultra thin wall substrates. Canning trials were conducted in two stages-- Prototype Canning Trial and Production Canning Trial. In Prototype Canning Trial, the root cause of substrate failure was identified and a model for predicting substrate failure was established. Key factors affecting scrap rate and gap capability were identified and predictions were performed on scrap rate and gap capability with the allowed variations in the key factors. The results provided guidelines in designing production line and process control.
Technical Paper

EVOP Design of Experiments

2003-03-03
2003-01-1015
Evolutionary Operation (EVOP) experimental design using Sequential Simplex method is an effective and robust means for determining the ideal process parameter (factor) settings to achieve optimum output (response) results. EVOP is the methodology of using on-line experimental design. Small perturbations to the process are made within allowable control plan limits, to minimize any product quality issues while obtaining information for improvement on the process. It is often the case in high volume production where issues exist, however off-line experimentation is not an option due to production time, the threat of quality issues and costs. EVOP leverages production time to arrive at the optimum solution while continuing to process saleable product, thus substantially reducing the cost of the analysis.
Technical Paper

Effect of Post Brazed Flux Residues of CAB Evaporators on the Consistency of Conversion Coating

2005-04-11
2005-01-1773
Evaporators for automotive air-conditioning systems are being coated externally to improve corrosion resistance, water drainage, and reduce potential odor concerns. The coating durability and efficiency in achieving its corrosion resistance depends on the coating uniformity and adhesion characteristics. Good coating adhesion on aluminum surface can be achieved after freeing the surface from the oxide and flux residues. Evaporators manufactured by the Controlled Atmosphere Brazing (CAB) process have flux residue remaining on the surface, the presence of which interferes with the coating process and also affects the performance of coated components. A methodology to quantify the effect of high Nocolok flux residue on heat exchanger coating uniformity has been presented.
Technical Paper

Electronics Environmental Testing in Perspective - A Fresh Approach

2003-03-03
2003-01-1360
A major part of product development is to validate robustness to the environment (e.g. temperature, vibration, EMC). Although much time and expense is spent doing so, using traditional approaches often leads to “feel good” results since the product “passes”. Such a false sense of security is misleading since such validation methods can have serious deficiencies. Presented is a Design Assurance process (Accelerated Stress Assurance Plan - ASAP) to validate modules that addresses these deficiencies. It places major emphasis on the analysis and development stages. It does not require large sample sizes, and overall test time and facilities is reduced (30-50% possible).. Just as for electronic modules, new and major changes to IC's need a shorter validation process. As an example, a relatively fast procedure for the production and application release of improved molding compounds for IC's is presented.
Technical Paper

Fully Recyclable Olefinic Instrument Panels

2002-03-04
2002-01-0310
Recycled resins can meet performance requirements on products which were initially designed for virgin materials. Olefinic instrument panel (I/P) scrap is being recycled from the Mazda Tribute and the Ford Escape into glove box bins. As a result, a quality part is being supplied to the customer and Visteon's Saline Plant has realized both increased plant operating efficiencies and landfill cost avoidance. The development process is described including: plant regrind sources, part molding and testing.
Technical Paper

GENPAD® - Ergonomic Packaging

2002-03-04
2002-01-1241
GENPAD® is a knowledge-based, three-dimensional modeling computer tool developed by Visteon to create occupant-friendly interiors. GENPAD quickly and easily produces zones to evaluate ergonomic aspects of vehicle interiors such as reach, clearance, vision, and reflection. These zones are produced from automated design studies based on experience and engineering standards accepted by the automotive industry. Without GENPAD, a single study requires an experienced engineer 4-6 hours to complete. Multiple studies require several engineers weeks to perform. The methods used are also error-prone due to complex instructions. To overcome these challenges, GENPAD provides over 50 ergonomic packaging studies that produce accurate results in minutes, not weeks, every time.
X