Refine Your Search

Topic

Author

Search Results

Technical Paper

A Discussion on Interior Compartment Doors and Latches

2004-03-08
2004-01-1483
Interior compartment doors are required by Federal Motor Vehicle Safety Standard (FMVSS) 201, to stay closed during physical head impact testing, and when subjected to specific inertia loads. This paper defines interior compartment doors, and shows examples of several different latches designed to keep these doors closed. It also explores the details of the requirements that interior compartment doors and their latches must meet, including differing requirements from automobile manufacturers. It then shows the conventional static method a supplier uses to analyze a latch and door system. And, since static calculations can't always capture the complexities of a dynamic event, this paper also presents a case study of one particular latch and door system showing a way to simulate the forces experienced by a latch. The dynamic simulation is done using Finite Element Analysis and instrumentation of actual hardware in physical tests.
Technical Paper

A High Speed Flow Visualization Study of Fuel Spray Pattern Effect on Mixture Formation in a Low Pressure Direct Injection Gasoline Engine

2007-04-16
2007-01-1411
In developing a direct injection gasoline engine, the in-cylinder fuel air mixing is key to good performance and emissions. High speed visualization in an optically accessible single cylinder engine for direct injection gasoline engine applications is an effective tool to reveal the fuel spray pattern effect on mixture formation The fuel injectors in this study employ the unique multi-hole turbulence nozzles in a PFI-like (Port Fuel Injection) fuel system architecture specifically developed as a Low Pressure Direct Injection (LPDI) fuel injection system. In this study, three injector sprays with a narrow 40° spray angle, a 60°spray angle with 5°offset angle, and a wide 80° spray angle with 10° offset angle were evaluated. Image processing algorithms were developed to analyze the nature of in-cylinder fuel-air mixing and the extent of fuel spray impingement on the cylinder wall.
Journal Article

A New Automotive Air Conditioning System Simulation Tool Developed in MATLAB/Simulink

2013-04-08
2013-01-0850
Accurate evaluation of vehicles' transient total power requirement helps achieving further improvements in vehicle fuel efficiency. When operated, the air-conditioning (A/C) system is the largest auxiliary load on a vehicle, therefore accurate evaluation of the load it places on the vehicle's engine and/or energy storage system is especially important. Vehicle simulation models, such as "Autonomie," have been used by OEMs to evaluate vehicles' energy performance. However, the load from the A/C system on the engine or on the energy storage system has not always been modeled in sufficient detail. A transient A/C simulation tool incorporated into vehicle simulation models would also provide a tool for developing more efficient A/C systems through a thorough consideration of the transient A/C system performance. The dynamic system simulation software MATLAB/Simulink® is frequently used by vehicle controls engineers to develop new and more efficient vehicle energy system controls.
Technical Paper

A Study on the Strength of Catalytic Converter Ultra Thin Wall Substrates

2003-03-03
2003-01-0662
Application of Ultra Thin Wall (UTW) ceramic substrates in the catalytic converter system requires the canner and component manufacturers to better understand the root cause and physics behind substrate breakage during the canning process. For this purpose, a ceramic substrate strength study for shoebox design has been conducted within Visteon Corporation. Computer Numerical Control (CNC) machined top and bottom fixtures, with identical inner surfaces as shoebox converter upper and lower shells, were used to crush mat wrapped substrates. Thin film pressure sensor technology enables the recording of substrate surface pressure during the compression process. Shell rib, washcoat, canning speed and cell density effects on substrate failure have been experimentally investigated. The development of a mathematical model helps to identify a better indicator to evaluate the substrate strength in the canning process and establish the strength for uncoated & coated substrates.
Technical Paper

A Virtual Testing Methodology for Automotive Concept Product Design

2002-03-04
2002-01-1176
The process for accurately estimating product reliability early in the development process can be a difficult and costly task. Traditional methods like Reliability Prediction Models and Life Testing Strategies yield beneficial results when relative information is known about the product that is to be analyzed. When there is minimal information known (prior failure rates…) such a new concept design these above reliability methods have limitations. For these cases a Virtual Testing Strategies have proven to yield valuable results. This paper will demonstrate a reliability analysis procedure for a new automotive concept design. This analysis procedure composes of a mathematical model, model validation, parameter diagram, design of experiment (DOE), response surface, and optimization.
Technical Paper

Accelerated Useful Life Testing and Field Correlation Methods

2002-03-04
2002-01-1175
The purpose of this paper is to present a common sense practical method for establishing and demonstrating reliability objectives. In particular, this paper will: describe an operational definition of “useful life”, describe an accelerated laboratory test procedure for demonstrating that products meet the useful life objective, and describe a method for demonstrating correlation between customer usage and laboratory testing.
Technical Paper

Aligning Human-System Integration and Systems Engineering

2004-10-18
2004-21-0021
One challenge facing automotive product development teams is the inclusion of the Human System Integration (HSI) community – consisting of human factors professionals, graphic and industrial designers, rapid prototyping software engineers, electronic hardware engineers, and systems engineers – in the Product Development Process (PDP). In order to achieve this integration, Visteon looked to the methods of systems engineering currently employed throughout the PDP. Overlaying the HSI process with an accepted systems engineering process description known as the N2 (N-squared) chart resulted in the outlining of expected inputs to the HSI process team, definitions of processes undertaken by the team, and expected outputs of those processes.
Technical Paper

An Integrated System Life Cycle-Based Risk Management Methodology

2002-03-04
2002-01-0145
A new risk management method, the System Integrated Life Cycle Risk Management Methodology (SILC RMM), is based on systems engineering principles and is compatible with current standards. The SILC method, created by automotive engineers, addresses shortcomings with FMEA and other risk management (RM) methods, and integrates the FMEA and risk management functions into day-to-day engineering project activities. The SILC approach accommodates technology, cost, schedule, environmental and safety risks throughout the systems engineering project life cycle - from conception to recycle. It allows direct integration of RM information with system and project information for more efficient and effective utilization of resources and optimal overall risk management.
Technical Paper

An Overview of Hardware-In-the-Loop Testing Systems at Visteon

2004-03-08
2004-01-1240
This paper discusses our experiences on the implementation and benefits of using the Hardware-In-the-Loop (HIL) systems for Powertrain control system software verification and validation. The Visteon HIL system integrated with several off-the-shelf diagnostics and calibration tools is briefly explained. Further, discussions on test automation sequence control and failure insertion are outlined The capabilities and advantages of using HIL for unit level software testing, open loop and closed-loop system testing, fault insertion and test automation are described. HIL also facilitates Software and Hardware Interface validation testing with low-level driver and platform software. This paper attempts to show the experiences with and capabilities of these HIL systems.
Technical Paper

Applying Lean Principles in a Test Laboratory Environment

2005-04-11
2005-01-1051
Much research exists on the application of lean concepts in a traditional manufacturing setting and new research is broadening the scope of lean to encompass the product development cycle, yet little is documented about how lean can apply in a product development test laboratory. Testing is a hybrid environment, facing challenges unique from the takt-time driven manufacturing environment and multi-value stream product development environment. This paper will address how lean is being adapted to a product development test laboratory, where the objective and method to create a competitive edge remains the same: to drive waste out of the system and reduce the lead-time to the customer.
Technical Paper

Automating Instrument Panel Head Impact Simulation

2005-04-11
2005-01-1221
Occupant head impact simulations on automotive instrument panels (IP) are routinely performed as part of an integrated design process during the course of IP development. Based on the requirements (F/CMVSS, ECE), head impact zones on the IP are first established, which are then used to determine the various “hit” locations to be tested/analyzed. Once critical impact locations are identified, CAE simulations performed which is a repetitive process that involves computing impact angles, positioning the rigid head form with an assigned initial velocity and defining suitable contacts within the finite element model. A commercially available CAE process automation tool was used to automate these steps and generate a head impact simulation model. Once the input model is checked for errors by the automated process, it can be submitted to a solver without any user intervention for analysis and report generation.
Technical Paper

Automotive Axle Simulation and Correlation

2006-04-03
2006-01-1255
Up to date, computer aided engineering (CAE) has been used in improvement of design quality and reduction of cost and delivery time. Although it has been widely accepted as a standard product development tool by the engineering community, CAE still faces many challenges in improving simulation process efficiency through process integration and automation, and simulation accuracy by analytical model/physical testing correlation. CAE engineers are constantly improving the accuracy of their analytical models through test correlation to deliver higher confidence for their analysis result. Although laboratory testing has provided an effective way to accelerate product development, analytical simulation of the lab test has been used frequently to further reduce the development cost and time throughout many industries. This paper presents a case study of CAE correlation of a finite element (FE) model of an automotive beam axle assembly in a laboratory test environment.
Technical Paper

Broadband Noise Source Models as Aeroacoustic Tools in Designing Low NVH HVAC Ducts

2006-04-03
2006-01-1192
Computational Fluid Dynamics (CFD) is an integral part of product development at Visteon Climate Systems with a validated set of CFD tools for airflow and thermal management processes. As we increasingly build CAE capabilities to design not only thermal comfort, but quiet systems, developing noise prediction capabilities becomes a high priority. Two Broadband Noise Source (BNS) models will be presented, namely Proudman's model for quadrupole source and Curle's boundary layer model for dipole source. Both models are derived from Lighthill's acoustic analogy which is based on the Navier-Stokes equations. BNS models provide aeroacoustic tools that are effective in screening air handling systems with higher noise levels and identifying components or surfaces that generate most of the noise, hence providing opportunities for early design changes. In this paper, BNS models were used as aeroacoustic design tools to redesign an automotive HVAC center duct with high levels of NVH.
Technical Paper

CAE Virtual Door Slam Test for Plastic Trim Components

2003-03-03
2003-01-1209
Visteon has developed a CAE procedure to qualify plastic door trim assemblies under the vehicle door slam Key Life Test (KLT) environments. The CAE Virtual Door Slam Test (VDST) procedure simulates the environment of a whole door structural assembly, as a hinged in-vehicle door slam configuration. It predicts the durability life of a plastic door trim sub-assembly, in terms of the number of slam cycles, based on the simulated stresses and plastic material fatigue damage model, at each critical location. The basic theory, FEA methods and techniques employed by the VDST procedure are briefly described in this paper. Door trim project examples are presented to illustrate the practical applications and their results, as well as the correlation with the physical door slam KLTs.
Technical Paper

CAE Virtual Test of Air Intake Manifolds Using Coupled Vibration and Pressure Pulsation Loads

2005-04-11
2005-01-1071
A coupled vibration and pressure loading procedure has been developed to perform a CAE virtual test for engine air intake manifolds. The CAE virtual test simulates the same physical test configuration and environments, such as the base acceleration vibration excitation and pressure pulsation loads, as well as temperature conditions, for design validation (DV) test of air intake manifolds. The original vibration and pressure load data, measured with respect to the engine speed rpm, are first converted to their respective vibration and pressure power spectrum density (PSD) profiles in frequency domain, based on the duty cycle specification. The final accelerated vibration excitation and pressure PSD load profiles for design validation are derived based on the key life test (KLT) duration and reliability requirements, using the equivalent fatigue damage technique.
Technical Paper

Closed Loop Maximum Dilution Limit Control using In-Cylinder Ionization Signal

2005-10-24
2005-01-3751
This paper presents a combustion stability index derived from an in-cylinder ionization signal to control the engine maximum EGR limit. Different from the existing approaches that use the ionization signal values to gauge how much EGR was added during the combustion, the proposed method concentrates on using the ionization signal duration and its stochastic properties to evaluate the end result of EGR on combustion stability. When the duration index or indexes are higher than pre-determined values, the EGR limit is set. The dynamometer engine test results have shown promise for closed loop EGR control of spark ignition engines.
Technical Paper

Combustion Characteristics of a Single-Cylinder Engine Equipped with Gasoline and Ethanol Dual-Fuel Systems

2008-06-23
2008-01-1767
The requirement of reduced emissions and improved fuel economy led the introduction of direct-injection (DI) spark-ignited (SI) engines. Dual-fuel injection system (direct-injection and port-fuel-injection (PFI)) was also used to improve engine performance at high load and speed. Ethanol is one of the several alternative transportation fuels considered for replacing fossil fuels such as gasoline and diesel. Ethanol offers high octane quality but with lower energy density than fossil fuels. This paper presents the combustion characteristics of a single cylinder dual-fuel injection SI engine with the following fueling cases: a) gasoline for PFI and DI, b) PFI gasoline and DI ethanol, and c) PFI ethanol and DI gasoline. For this study, the DI fueling portion varied from 0 to 100 percentage of the total fueling over different engine operational conditions while the engine air-to-fuel ratio remained at a constant level.
Technical Paper

Control Method of Dual Motor-Based Steer-by-Wire System

2007-04-16
2007-01-1149
This paper describes a front road wheel steer-by-wire system with two actuator motors on the rack and pinion assembly to move the road wheels. Dual actuators are used to provide actuator redundancy and to enhance the fault tolerance capability. When one actuator faults or fails, the other actuator is designed to work independently and maintain full system performance. The paper emphasizes control method to implement the motion control for the front road wheel steer-by-wire system with two actuators on the common load. The proposed dual servo synchronization motion control implements the angle tracking for the road wheel reference input by controlling two actuators synchronously and cooperatively. It includes two servo feedback control loops to track the common reference input. The angular position error between two feedback loops is compensated using a synchronized compensator.
Technical Paper

Control Software Interface for Managing System Requirements

2004-03-08
2004-01-0363
Not all software tools are created equal and not all software tools are created to perform the same tasks. Therefore, different software tools are used to perform different tasks. However, being able to share the information between the different software tools, without having to manually re-enter (duplicate) any of the information, can save a lot of time and improve the quality of the product. The control software interface presented in this paper, allows system engineers to exchange data between software tools in an efficient manner which maximizes each tools capabilities and ultimately reduces development time and improves the quality of the product.
Technical Paper

Correlation Study of Exhaust Manifold - Lab Test Results vs Customer Fleet Results

2002-03-04
2002-01-1317
The purpose of this study is to develop specifically a correlation between Exhaust Manifold Cracking Laboratory Test results and 150,000 mile customer fleet usage test results. The study shows that the exhaust manifold design meets the reliability requirements of 10 years or 150,000 miles, given 90th percentile customer usage without an evidence of cracking or audible leaks. This correlation between the Lab Test and the customer Fleet results has been expressed as an acceleration factor. An acceleration factor is the ratio of how much quicker the engine dynamometer test ( i.e. Lab Test ) can accumulate the effect of customer usage over time versus the customers themselves. The acceleration factor is provided for useful life time period of 10 years or 150,000 miles. The recommended acceleration factor, determined in this study, is 38 to 1, comparing the engine dynamometer test ( i.e. Lab Test ) results to 150,000 mile modular truck customer fleet field results.
X